Solve for x
x = -\frac{227}{5} = -45\frac{2}{5} = -45.4
Graph
Share
Copied to clipboard
9+x=\frac{7}{2}\left(35+x\right)
Multiply \frac{1}{2} and 7 to get \frac{7}{2}.
9+x=\frac{7}{2}\times 35+\frac{7}{2}x
Use the distributive property to multiply \frac{7}{2} by 35+x.
9+x=\frac{7\times 35}{2}+\frac{7}{2}x
Express \frac{7}{2}\times 35 as a single fraction.
9+x=\frac{245}{2}+\frac{7}{2}x
Multiply 7 and 35 to get 245.
9+x-\frac{7}{2}x=\frac{245}{2}
Subtract \frac{7}{2}x from both sides.
9-\frac{5}{2}x=\frac{245}{2}
Combine x and -\frac{7}{2}x to get -\frac{5}{2}x.
-\frac{5}{2}x=\frac{245}{2}-9
Subtract 9 from both sides.
-\frac{5}{2}x=\frac{245}{2}-\frac{18}{2}
Convert 9 to fraction \frac{18}{2}.
-\frac{5}{2}x=\frac{245-18}{2}
Since \frac{245}{2} and \frac{18}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{2}x=\frac{227}{2}
Subtract 18 from 245 to get 227.
x=\frac{227}{2}\left(-\frac{2}{5}\right)
Multiply both sides by -\frac{2}{5}, the reciprocal of -\frac{5}{2}.
x=\frac{227\left(-2\right)}{2\times 5}
Multiply \frac{227}{2} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-454}{10}
Do the multiplications in the fraction \frac{227\left(-2\right)}{2\times 5}.
x=-\frac{227}{5}
Reduce the fraction \frac{-454}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}