Solve for x
x=\left(-1+i\right)y+\left(8+i\right)
Solve for y
y=\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{7}{2}+\frac{9}{2}i\right)
Share
Copied to clipboard
9+ix+2iy=x+7i
Use the distributive property to multiply x+2y by i.
9+ix+2iy-x=7i
Subtract x from both sides.
9+\left(-1+i\right)x+2iy=7i
Combine ix and -x to get \left(-1+i\right)x.
\left(-1+i\right)x+2iy=7i-9
Subtract 9 from both sides.
\left(-1+i\right)x=7i-9-2iy
Subtract 2iy from both sides.
\left(-1+i\right)x=-9+7i-2iy
The equation is in standard form.
\frac{\left(-1+i\right)x}{-1+i}=\frac{-9+7i-2iy}{-1+i}
Divide both sides by -1+i.
x=\frac{-9+7i-2iy}{-1+i}
Dividing by -1+i undoes the multiplication by -1+i.
x=\left(-1+i\right)y+\left(8+i\right)
Divide -9+7i-2iy by -1+i.
9+ix+2iy=x+7i
Use the distributive property to multiply x+2y by i.
ix+2iy=x+7i-9
Subtract 9 from both sides.
2iy=x+7i-9-ix
Subtract ix from both sides.
2iy=\left(1-i\right)x+7i-9
Combine x and -ix to get \left(1-i\right)x.
2iy=\left(1-i\right)x+\left(-9+7i\right)
The equation is in standard form.
\frac{2iy}{2i}=\frac{\left(1-i\right)x+\left(-9+7i\right)}{2i}
Divide both sides by 2i.
y=\frac{\left(1-i\right)x+\left(-9+7i\right)}{2i}
Dividing by 2i undoes the multiplication by 2i.
y=\left(-\frac{1}{2}-\frac{1}{2}i\right)x+\left(\frac{7}{2}+\frac{9}{2}i\right)
Divide \left(1-i\right)x+\left(-9+7i\right) by 2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}