Solve for x (complex solution)
x=\frac{-4\sqrt{35}i+4}{9}\approx 0.444444444-2.629368792i
x=\frac{4+4\sqrt{35}i}{9}\approx 0.444444444+2.629368792i
Graph
Share
Copied to clipboard
-9x^{2}+8x=64
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-9x^{2}+8x-64=64-64
Subtract 64 from both sides of the equation.
-9x^{2}+8x-64=0
Subtracting 64 from itself leaves 0.
x=\frac{-8±\sqrt{8^{2}-4\left(-9\right)\left(-64\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 8 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-9\right)\left(-64\right)}}{2\left(-9\right)}
Square 8.
x=\frac{-8±\sqrt{64+36\left(-64\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-8±\sqrt{64-2304}}{2\left(-9\right)}
Multiply 36 times -64.
x=\frac{-8±\sqrt{-2240}}{2\left(-9\right)}
Add 64 to -2304.
x=\frac{-8±8\sqrt{35}i}{2\left(-9\right)}
Take the square root of -2240.
x=\frac{-8±8\sqrt{35}i}{-18}
Multiply 2 times -9.
x=\frac{-8+8\sqrt{35}i}{-18}
Now solve the equation x=\frac{-8±8\sqrt{35}i}{-18} when ± is plus. Add -8 to 8i\sqrt{35}.
x=\frac{-4\sqrt{35}i+4}{9}
Divide -8+8i\sqrt{35} by -18.
x=\frac{-8\sqrt{35}i-8}{-18}
Now solve the equation x=\frac{-8±8\sqrt{35}i}{-18} when ± is minus. Subtract 8i\sqrt{35} from -8.
x=\frac{4+4\sqrt{35}i}{9}
Divide -8-8i\sqrt{35} by -18.
x=\frac{-4\sqrt{35}i+4}{9} x=\frac{4+4\sqrt{35}i}{9}
The equation is now solved.
-9x^{2}+8x=64
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+8x}{-9}=\frac{64}{-9}
Divide both sides by -9.
x^{2}+\frac{8}{-9}x=\frac{64}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{8}{9}x=\frac{64}{-9}
Divide 8 by -9.
x^{2}-\frac{8}{9}x=-\frac{64}{9}
Divide 64 by -9.
x^{2}-\frac{8}{9}x+\left(-\frac{4}{9}\right)^{2}=-\frac{64}{9}+\left(-\frac{4}{9}\right)^{2}
Divide -\frac{8}{9}, the coefficient of the x term, by 2 to get -\frac{4}{9}. Then add the square of -\frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{9}x+\frac{16}{81}=-\frac{64}{9}+\frac{16}{81}
Square -\frac{4}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{9}x+\frac{16}{81}=-\frac{560}{81}
Add -\frac{64}{9} to \frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{9}\right)^{2}=-\frac{560}{81}
Factor x^{2}-\frac{8}{9}x+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{9}\right)^{2}}=\sqrt{-\frac{560}{81}}
Take the square root of both sides of the equation.
x-\frac{4}{9}=\frac{4\sqrt{35}i}{9} x-\frac{4}{9}=-\frac{4\sqrt{35}i}{9}
Simplify.
x=\frac{4+4\sqrt{35}i}{9} x=\frac{-4\sqrt{35}i+4}{9}
Add \frac{4}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}