Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x-2\left(3+x\right)x-2=0
Subtract 2 from both sides.
8x+\left(-6-2x\right)x-2=0
Use the distributive property to multiply -2 by 3+x.
8x-6x-2x^{2}-2=0
Use the distributive property to multiply -6-2x by x.
2x-2x^{2}-2=0
Combine 8x and -6x to get 2x.
-2x^{2}+2x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square 2.
x=\frac{-2±\sqrt{4+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-2±\sqrt{4-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-2±\sqrt{-12}}{2\left(-2\right)}
Add 4 to -16.
x=\frac{-2±2\sqrt{3}i}{2\left(-2\right)}
Take the square root of -12.
x=\frac{-2±2\sqrt{3}i}{-4}
Multiply 2 times -2.
x=\frac{-2+2\sqrt{3}i}{-4}
Now solve the equation x=\frac{-2±2\sqrt{3}i}{-4} when ± is plus. Add -2 to 2i\sqrt{3}.
x=\frac{-\sqrt{3}i+1}{2}
Divide -2+2i\sqrt{3} by -4.
x=\frac{-2\sqrt{3}i-2}{-4}
Now solve the equation x=\frac{-2±2\sqrt{3}i}{-4} when ± is minus. Subtract 2i\sqrt{3} from -2.
x=\frac{1+\sqrt{3}i}{2}
Divide -2-2i\sqrt{3} by -4.
x=\frac{-\sqrt{3}i+1}{2} x=\frac{1+\sqrt{3}i}{2}
The equation is now solved.
8x-2\left(3+x\right)x=2
Multiply -1 and 2 to get -2.
8x+\left(-6-2x\right)x=2
Use the distributive property to multiply -2 by 3+x.
8x-6x-2x^{2}=2
Use the distributive property to multiply -6-2x by x.
2x-2x^{2}=2
Combine 8x and -6x to get 2x.
-2x^{2}+2x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+2x}{-2}=\frac{2}{-2}
Divide both sides by -2.
x^{2}+\frac{2}{-2}x=\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-x=\frac{2}{-2}
Divide 2 by -2.
x^{2}-x=-1
Divide 2 by -2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-1+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-1+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{3}{4}
Add -1 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{3}i}{2} x-\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
Add \frac{1}{2} to both sides of the equation.