Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+8x-14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-14\right)}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\left(-14\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64-56}}{2\left(-1\right)}
Multiply 4 times -14.
x=\frac{-8±\sqrt{8}}{2\left(-1\right)}
Add 64 to -56.
x=\frac{-8±2\sqrt{2}}{2\left(-1\right)}
Take the square root of 8.
x=\frac{-8±2\sqrt{2}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{2}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{2}}{-2} when ± is plus. Add -8 to 2\sqrt{2}.
x=4-\sqrt{2}
Divide 2\sqrt{2}-8 by -2.
x=\frac{-2\sqrt{2}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{2}}{-2} when ± is minus. Subtract 2\sqrt{2} from -8.
x=\sqrt{2}+4
Divide -8-2\sqrt{2} by -2.
-x^{2}+8x-14=-\left(x-\left(4-\sqrt{2}\right)\right)\left(x-\left(\sqrt{2}+4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4-\sqrt{2} for x_{1} and 4+\sqrt{2} for x_{2}.