Solve for x
x=\frac{\sqrt{4405}}{45}-\frac{4}{9}\approx 1.030448312
x=-\frac{\sqrt{4405}}{45}-\frac{4}{9}\approx -1.919337201
Graph
Share
Copied to clipboard
9x^{2}+8x=\frac{89}{5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}+8x-\frac{89}{5}=\frac{89}{5}-\frac{89}{5}
Subtract \frac{89}{5} from both sides of the equation.
9x^{2}+8x-\frac{89}{5}=0
Subtracting \frac{89}{5} from itself leaves 0.
x=\frac{-8±\sqrt{8^{2}-4\times 9\left(-\frac{89}{5}\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 8 for b, and -\frac{89}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 9\left(-\frac{89}{5}\right)}}{2\times 9}
Square 8.
x=\frac{-8±\sqrt{64-36\left(-\frac{89}{5}\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-8±\sqrt{64+\frac{3204}{5}}}{2\times 9}
Multiply -36 times -\frac{89}{5}.
x=\frac{-8±\sqrt{\frac{3524}{5}}}{2\times 9}
Add 64 to \frac{3204}{5}.
x=\frac{-8±\frac{2\sqrt{4405}}{5}}{2\times 9}
Take the square root of \frac{3524}{5}.
x=\frac{-8±\frac{2\sqrt{4405}}{5}}{18}
Multiply 2 times 9.
x=\frac{\frac{2\sqrt{4405}}{5}-8}{18}
Now solve the equation x=\frac{-8±\frac{2\sqrt{4405}}{5}}{18} when ± is plus. Add -8 to \frac{2\sqrt{4405}}{5}.
x=\frac{\sqrt{4405}}{45}-\frac{4}{9}
Divide -8+\frac{2\sqrt{4405}}{5} by 18.
x=\frac{-\frac{2\sqrt{4405}}{5}-8}{18}
Now solve the equation x=\frac{-8±\frac{2\sqrt{4405}}{5}}{18} when ± is minus. Subtract \frac{2\sqrt{4405}}{5} from -8.
x=-\frac{\sqrt{4405}}{45}-\frac{4}{9}
Divide -8-\frac{2\sqrt{4405}}{5} by 18.
x=\frac{\sqrt{4405}}{45}-\frac{4}{9} x=-\frac{\sqrt{4405}}{45}-\frac{4}{9}
The equation is now solved.
9x^{2}+8x=\frac{89}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}+8x}{9}=\frac{\frac{89}{5}}{9}
Divide both sides by 9.
x^{2}+\frac{8}{9}x=\frac{\frac{89}{5}}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{8}{9}x=\frac{89}{45}
Divide \frac{89}{5} by 9.
x^{2}+\frac{8}{9}x+\left(\frac{4}{9}\right)^{2}=\frac{89}{45}+\left(\frac{4}{9}\right)^{2}
Divide \frac{8}{9}, the coefficient of the x term, by 2 to get \frac{4}{9}. Then add the square of \frac{4}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{9}x+\frac{16}{81}=\frac{89}{45}+\frac{16}{81}
Square \frac{4}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{9}x+\frac{16}{81}=\frac{881}{405}
Add \frac{89}{45} to \frac{16}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{9}\right)^{2}=\frac{881}{405}
Factor x^{2}+\frac{8}{9}x+\frac{16}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{9}\right)^{2}}=\sqrt{\frac{881}{405}}
Take the square root of both sides of the equation.
x+\frac{4}{9}=\frac{\sqrt{4405}}{45} x+\frac{4}{9}=-\frac{\sqrt{4405}}{45}
Simplify.
x=\frac{\sqrt{4405}}{45}-\frac{4}{9} x=-\frac{\sqrt{4405}}{45}-\frac{4}{9}
Subtract \frac{4}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}