Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(x+7x^{2}\right)
Factor out 8.
x\left(1+7x\right)
Consider x+7x^{2}. Factor out x.
8x\left(7x+1\right)
Rewrite the complete factored expression.
56x^{2}+8x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}}}{2\times 56}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±8}{2\times 56}
Take the square root of 8^{2}.
x=\frac{-8±8}{112}
Multiply 2 times 56.
x=\frac{0}{112}
Now solve the equation x=\frac{-8±8}{112} when ± is plus. Add -8 to 8.
x=0
Divide 0 by 112.
x=-\frac{16}{112}
Now solve the equation x=\frac{-8±8}{112} when ± is minus. Subtract 8 from -8.
x=-\frac{1}{7}
Reduce the fraction \frac{-16}{112} to lowest terms by extracting and canceling out 16.
56x^{2}+8x=56x\left(x-\left(-\frac{1}{7}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{7} for x_{2}.
56x^{2}+8x=56x\left(x+\frac{1}{7}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
56x^{2}+8x=56x\times \frac{7x+1}{7}
Add \frac{1}{7} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
56x^{2}+8x=8x\left(7x+1\right)
Cancel out 7, the greatest common factor in 56 and 7.