Solve for x (complex solution)
x=\frac{125+5\sqrt{852526}i}{2697}\approx 0.046347794+1.711760002i
x=\frac{-5\sqrt{852526}i+125}{2697}\approx 0.046347794-1.711760002i
Graph
Share
Copied to clipboard
899x^{2}-\frac{250}{3}x+\frac{23725}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{250}{3}\right)±\sqrt{\left(-\frac{250}{3}\right)^{2}-4\times 899\times \frac{23725}{9}}}{2\times 899}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 899 for a, -\frac{250}{3} for b, and \frac{23725}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{250}{3}\right)±\sqrt{\frac{62500}{9}-4\times 899\times \frac{23725}{9}}}{2\times 899}
Square -\frac{250}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{250}{3}\right)±\sqrt{\frac{62500}{9}-3596\times \frac{23725}{9}}}{2\times 899}
Multiply -4 times 899.
x=\frac{-\left(-\frac{250}{3}\right)±\sqrt{\frac{62500-85315100}{9}}}{2\times 899}
Multiply -3596 times \frac{23725}{9}.
x=\frac{-\left(-\frac{250}{3}\right)±\sqrt{-\frac{85252600}{9}}}{2\times 899}
Add \frac{62500}{9} to -\frac{85315100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{250}{3}\right)±\frac{10\sqrt{852526}i}{3}}{2\times 899}
Take the square root of -\frac{85252600}{9}.
x=\frac{\frac{250}{3}±\frac{10\sqrt{852526}i}{3}}{2\times 899}
The opposite of -\frac{250}{3} is \frac{250}{3}.
x=\frac{\frac{250}{3}±\frac{10\sqrt{852526}i}{3}}{1798}
Multiply 2 times 899.
x=\frac{250+10\sqrt{852526}i}{3\times 1798}
Now solve the equation x=\frac{\frac{250}{3}±\frac{10\sqrt{852526}i}{3}}{1798} when ± is plus. Add \frac{250}{3} to \frac{10i\sqrt{852526}}{3}.
x=\frac{125+5\sqrt{852526}i}{2697}
Divide \frac{250+10i\sqrt{852526}}{3} by 1798.
x=\frac{-10\sqrt{852526}i+250}{3\times 1798}
Now solve the equation x=\frac{\frac{250}{3}±\frac{10\sqrt{852526}i}{3}}{1798} when ± is minus. Subtract \frac{10i\sqrt{852526}}{3} from \frac{250}{3}.
x=\frac{-5\sqrt{852526}i+125}{2697}
Divide \frac{250-10i\sqrt{852526}}{3} by 1798.
x=\frac{125+5\sqrt{852526}i}{2697} x=\frac{-5\sqrt{852526}i+125}{2697}
The equation is now solved.
899x^{2}-\frac{250}{3}x+\frac{23725}{9}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
899x^{2}-\frac{250}{3}x+\frac{23725}{9}-\frac{23725}{9}=-\frac{23725}{9}
Subtract \frac{23725}{9} from both sides of the equation.
899x^{2}-\frac{250}{3}x=-\frac{23725}{9}
Subtracting \frac{23725}{9} from itself leaves 0.
\frac{899x^{2}-\frac{250}{3}x}{899}=-\frac{\frac{23725}{9}}{899}
Divide both sides by 899.
x^{2}+\left(-\frac{\frac{250}{3}}{899}\right)x=-\frac{\frac{23725}{9}}{899}
Dividing by 899 undoes the multiplication by 899.
x^{2}-\frac{250}{2697}x=-\frac{\frac{23725}{9}}{899}
Divide -\frac{250}{3} by 899.
x^{2}-\frac{250}{2697}x=-\frac{23725}{8091}
Divide -\frac{23725}{9} by 899.
x^{2}-\frac{250}{2697}x+\left(-\frac{125}{2697}\right)^{2}=-\frac{23725}{8091}+\left(-\frac{125}{2697}\right)^{2}
Divide -\frac{250}{2697}, the coefficient of the x term, by 2 to get -\frac{125}{2697}. Then add the square of -\frac{125}{2697} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{250}{2697}x+\frac{15625}{7273809}=-\frac{23725}{8091}+\frac{15625}{7273809}
Square -\frac{125}{2697} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{250}{2697}x+\frac{15625}{7273809}=-\frac{21313150}{7273809}
Add -\frac{23725}{8091} to \frac{15625}{7273809} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{125}{2697}\right)^{2}=-\frac{21313150}{7273809}
Factor x^{2}-\frac{250}{2697}x+\frac{15625}{7273809}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{125}{2697}\right)^{2}}=\sqrt{-\frac{21313150}{7273809}}
Take the square root of both sides of the equation.
x-\frac{125}{2697}=\frac{5\sqrt{852526}i}{2697} x-\frac{125}{2697}=-\frac{5\sqrt{852526}i}{2697}
Simplify.
x=\frac{125+5\sqrt{852526}i}{2697} x=\frac{-5\sqrt{852526}i+125}{2697}
Add \frac{125}{2697} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}