Evaluate
\frac{224}{9}\approx 24.888888889
Factor
\frac{2 ^ {5} \cdot 7}{3 ^ {2}} = 24\frac{8}{9} = 24.88888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)896}\\\end{array}
Use the 1^{st} digit 8 from dividend 896
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)896}\\\end{array}
Since 8 is less than 36, use the next digit 9 from dividend 896 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)896}\\\end{array}
Use the 2^{nd} digit 9 from dividend 896
\begin{array}{l}\phantom{36)}02\phantom{4}\\36\overline{)896}\\\phantom{36)}\underline{\phantom{}72\phantom{9}}\\\phantom{36)}17\\\end{array}
Find closest multiple of 36 to 89. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 89 to get reminder 17. Add 2 to quotient.
\begin{array}{l}\phantom{36)}02\phantom{5}\\36\overline{)896}\\\phantom{36)}\underline{\phantom{}72\phantom{9}}\\\phantom{36)}176\\\end{array}
Use the 3^{rd} digit 6 from dividend 896
\begin{array}{l}\phantom{36)}024\phantom{6}\\36\overline{)896}\\\phantom{36)}\underline{\phantom{}72\phantom{9}}\\\phantom{36)}176\\\phantom{36)}\underline{\phantom{}144\phantom{}}\\\phantom{36)9}32\\\end{array}
Find closest multiple of 36 to 176. We see that 4 \times 36 = 144 is the nearest. Now subtract 144 from 176 to get reminder 32. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }32
Since 32 is less than 36, stop the division. The reminder is 32. The topmost line 024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}