Evaluate
\frac{2239000}{11397}\approx 196.455207511
Factor
\frac{2 ^ {3} \cdot 5 ^ {3} \cdot 2239}{3 \cdot 29 \cdot 131} = 196\frac{5188}{11397} = 196.45520751074844
Share
Copied to clipboard
\begin{array}{l}\phantom{45588)}\phantom{1}\\45588\overline{)8956000}\\\end{array}
Use the 1^{st} digit 8 from dividend 8956000
\begin{array}{l}\phantom{45588)}0\phantom{2}\\45588\overline{)8956000}\\\end{array}
Since 8 is less than 45588, use the next digit 9 from dividend 8956000 and add 0 to the quotient
\begin{array}{l}\phantom{45588)}0\phantom{3}\\45588\overline{)8956000}\\\end{array}
Use the 2^{nd} digit 9 from dividend 8956000
\begin{array}{l}\phantom{45588)}00\phantom{4}\\45588\overline{)8956000}\\\end{array}
Since 89 is less than 45588, use the next digit 5 from dividend 8956000 and add 0 to the quotient
\begin{array}{l}\phantom{45588)}00\phantom{5}\\45588\overline{)8956000}\\\end{array}
Use the 3^{rd} digit 5 from dividend 8956000
\begin{array}{l}\phantom{45588)}000\phantom{6}\\45588\overline{)8956000}\\\end{array}
Since 895 is less than 45588, use the next digit 6 from dividend 8956000 and add 0 to the quotient
\begin{array}{l}\phantom{45588)}000\phantom{7}\\45588\overline{)8956000}\\\end{array}
Use the 4^{th} digit 6 from dividend 8956000
\begin{array}{l}\phantom{45588)}0000\phantom{8}\\45588\overline{)8956000}\\\end{array}
Since 8956 is less than 45588, use the next digit 0 from dividend 8956000 and add 0 to the quotient
\begin{array}{l}\phantom{45588)}0000\phantom{9}\\45588\overline{)8956000}\\\end{array}
Use the 5^{th} digit 0 from dividend 8956000
\begin{array}{l}\phantom{45588)}00001\phantom{10}\\45588\overline{)8956000}\\\phantom{45588)}\underline{\phantom{}45588\phantom{99}}\\\phantom{45588)}43972\\\end{array}
Find closest multiple of 45588 to 89560. We see that 1 \times 45588 = 45588 is the nearest. Now subtract 45588 from 89560 to get reminder 43972. Add 1 to quotient.
\begin{array}{l}\phantom{45588)}00001\phantom{11}\\45588\overline{)8956000}\\\phantom{45588)}\underline{\phantom{}45588\phantom{99}}\\\phantom{45588)}439720\\\end{array}
Use the 6^{th} digit 0 from dividend 8956000
\begin{array}{l}\phantom{45588)}000019\phantom{12}\\45588\overline{)8956000}\\\phantom{45588)}\underline{\phantom{}45588\phantom{99}}\\\phantom{45588)}439720\\\phantom{45588)}\underline{\phantom{}410292\phantom{9}}\\\phantom{45588)9}29428\\\end{array}
Find closest multiple of 45588 to 439720. We see that 9 \times 45588 = 410292 is the nearest. Now subtract 410292 from 439720 to get reminder 29428. Add 9 to quotient.
\begin{array}{l}\phantom{45588)}000019\phantom{13}\\45588\overline{)8956000}\\\phantom{45588)}\underline{\phantom{}45588\phantom{99}}\\\phantom{45588)}439720\\\phantom{45588)}\underline{\phantom{}410292\phantom{9}}\\\phantom{45588)9}294280\\\end{array}
Use the 7^{th} digit 0 from dividend 8956000
\begin{array}{l}\phantom{45588)}0000196\phantom{14}\\45588\overline{)8956000}\\\phantom{45588)}\underline{\phantom{}45588\phantom{99}}\\\phantom{45588)}439720\\\phantom{45588)}\underline{\phantom{}410292\phantom{9}}\\\phantom{45588)9}294280\\\phantom{45588)}\underline{\phantom{9}273528\phantom{}}\\\phantom{45588)99}20752\\\end{array}
Find closest multiple of 45588 to 294280. We see that 6 \times 45588 = 273528 is the nearest. Now subtract 273528 from 294280 to get reminder 20752. Add 6 to quotient.
\text{Quotient: }196 \text{Reminder: }20752
Since 20752 is less than 45588, stop the division. The reminder is 20752. The topmost line 0000196 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 196.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}