Solve for x (complex solution)
x=\frac{953+3\sqrt{305342}i}{2239}\approx 0.425636445+0.740389812i
x=\frac{-3\sqrt{305342}i+953}{2239}\approx 0.425636445-0.740389812i
Graph
Share
Copied to clipboard
8956x^{2}-7624x+6532=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7624\right)±\sqrt{\left(-7624\right)^{2}-4\times 8956\times 6532}}{2\times 8956}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8956 for a, -7624 for b, and 6532 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7624\right)±\sqrt{58125376-4\times 8956\times 6532}}{2\times 8956}
Square -7624.
x=\frac{-\left(-7624\right)±\sqrt{58125376-35824\times 6532}}{2\times 8956}
Multiply -4 times 8956.
x=\frac{-\left(-7624\right)±\sqrt{58125376-234002368}}{2\times 8956}
Multiply -35824 times 6532.
x=\frac{-\left(-7624\right)±\sqrt{-175876992}}{2\times 8956}
Add 58125376 to -234002368.
x=\frac{-\left(-7624\right)±24\sqrt{305342}i}{2\times 8956}
Take the square root of -175876992.
x=\frac{7624±24\sqrt{305342}i}{2\times 8956}
The opposite of -7624 is 7624.
x=\frac{7624±24\sqrt{305342}i}{17912}
Multiply 2 times 8956.
x=\frac{7624+24\sqrt{305342}i}{17912}
Now solve the equation x=\frac{7624±24\sqrt{305342}i}{17912} when ± is plus. Add 7624 to 24i\sqrt{305342}.
x=\frac{953+3\sqrt{305342}i}{2239}
Divide 7624+24i\sqrt{305342} by 17912.
x=\frac{-24\sqrt{305342}i+7624}{17912}
Now solve the equation x=\frac{7624±24\sqrt{305342}i}{17912} when ± is minus. Subtract 24i\sqrt{305342} from 7624.
x=\frac{-3\sqrt{305342}i+953}{2239}
Divide 7624-24i\sqrt{305342} by 17912.
x=\frac{953+3\sqrt{305342}i}{2239} x=\frac{-3\sqrt{305342}i+953}{2239}
The equation is now solved.
8956x^{2}-7624x+6532=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8956x^{2}-7624x+6532-6532=-6532
Subtract 6532 from both sides of the equation.
8956x^{2}-7624x=-6532
Subtracting 6532 from itself leaves 0.
\frac{8956x^{2}-7624x}{8956}=-\frac{6532}{8956}
Divide both sides by 8956.
x^{2}+\left(-\frac{7624}{8956}\right)x=-\frac{6532}{8956}
Dividing by 8956 undoes the multiplication by 8956.
x^{2}-\frac{1906}{2239}x=-\frac{6532}{8956}
Reduce the fraction \frac{-7624}{8956} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1906}{2239}x=-\frac{1633}{2239}
Reduce the fraction \frac{-6532}{8956} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1906}{2239}x+\left(-\frac{953}{2239}\right)^{2}=-\frac{1633}{2239}+\left(-\frac{953}{2239}\right)^{2}
Divide -\frac{1906}{2239}, the coefficient of the x term, by 2 to get -\frac{953}{2239}. Then add the square of -\frac{953}{2239} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1906}{2239}x+\frac{908209}{5013121}=-\frac{1633}{2239}+\frac{908209}{5013121}
Square -\frac{953}{2239} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1906}{2239}x+\frac{908209}{5013121}=-\frac{2748078}{5013121}
Add -\frac{1633}{2239} to \frac{908209}{5013121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{953}{2239}\right)^{2}=-\frac{2748078}{5013121}
Factor x^{2}-\frac{1906}{2239}x+\frac{908209}{5013121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{953}{2239}\right)^{2}}=\sqrt{-\frac{2748078}{5013121}}
Take the square root of both sides of the equation.
x-\frac{953}{2239}=\frac{3\sqrt{305342}i}{2239} x-\frac{953}{2239}=-\frac{3\sqrt{305342}i}{2239}
Simplify.
x=\frac{953+3\sqrt{305342}i}{2239} x=\frac{-3\sqrt{305342}i+953}{2239}
Add \frac{953}{2239} to both sides of the equation.
x ^ 2 -\frac{1906}{2239}x +\frac{1633}{2239} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8956
r + s = \frac{1906}{2239} rs = \frac{1633}{2239}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{953}{2239} - u s = \frac{953}{2239} + u
Two numbers r and s sum up to \frac{1906}{2239} exactly when the average of the two numbers is \frac{1}{2}*\frac{1906}{2239} = \frac{953}{2239}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{953}{2239} - u) (\frac{953}{2239} + u) = \frac{1633}{2239}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1633}{2239}
\frac{908209}{5013121} - u^2 = \frac{1633}{2239}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1633}{2239}-\frac{908209}{5013121} = -\frac{2748078}{5013121}
Simplify the expression by subtracting \frac{908209}{5013121} on both sides
u^2 = \frac{2748078}{5013121} u = \pm\sqrt{\frac{2748078}{5013121}} = \pm \frac{\sqrt{2748078}}{2239}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{953}{2239} - \frac{\sqrt{2748078}}{2239} = 0.426 - 0.740i s = \frac{953}{2239} + \frac{\sqrt{2748078}}{2239} = 0.426 + 0.740i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}