Evaluate
\frac{447}{35}\approx 12.771428571
Factor
\frac{3 \cdot 149}{5 \cdot 7} = 12\frac{27}{35} = 12.771428571428572
Share
Copied to clipboard
\begin{array}{l}\phantom{70)}\phantom{1}\\70\overline{)894}\\\end{array}
Use the 1^{st} digit 8 from dividend 894
\begin{array}{l}\phantom{70)}0\phantom{2}\\70\overline{)894}\\\end{array}
Since 8 is less than 70, use the next digit 9 from dividend 894 and add 0 to the quotient
\begin{array}{l}\phantom{70)}0\phantom{3}\\70\overline{)894}\\\end{array}
Use the 2^{nd} digit 9 from dividend 894
\begin{array}{l}\phantom{70)}01\phantom{4}\\70\overline{)894}\\\phantom{70)}\underline{\phantom{}70\phantom{9}}\\\phantom{70)}19\\\end{array}
Find closest multiple of 70 to 89. We see that 1 \times 70 = 70 is the nearest. Now subtract 70 from 89 to get reminder 19. Add 1 to quotient.
\begin{array}{l}\phantom{70)}01\phantom{5}\\70\overline{)894}\\\phantom{70)}\underline{\phantom{}70\phantom{9}}\\\phantom{70)}194\\\end{array}
Use the 3^{rd} digit 4 from dividend 894
\begin{array}{l}\phantom{70)}012\phantom{6}\\70\overline{)894}\\\phantom{70)}\underline{\phantom{}70\phantom{9}}\\\phantom{70)}194\\\phantom{70)}\underline{\phantom{}140\phantom{}}\\\phantom{70)9}54\\\end{array}
Find closest multiple of 70 to 194. We see that 2 \times 70 = 140 is the nearest. Now subtract 140 from 194 to get reminder 54. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }54
Since 54 is less than 70, stop the division. The reminder is 54. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}