Evaluate
\frac{89}{15}\approx 5.933333333
Factor
\frac{89}{3 \cdot 5} = 5\frac{14}{15} = 5.933333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)890}\\\end{array}
Use the 1^{st} digit 8 from dividend 890
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)890}\\\end{array}
Since 8 is less than 150, use the next digit 9 from dividend 890 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)890}\\\end{array}
Use the 2^{nd} digit 9 from dividend 890
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)890}\\\end{array}
Since 89 is less than 150, use the next digit 0 from dividend 890 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)890}\\\end{array}
Use the 3^{rd} digit 0 from dividend 890
\begin{array}{l}\phantom{150)}005\phantom{6}\\150\overline{)890}\\\phantom{150)}\underline{\phantom{}750\phantom{}}\\\phantom{150)}140\\\end{array}
Find closest multiple of 150 to 890. We see that 5 \times 150 = 750 is the nearest. Now subtract 750 from 890 to get reminder 140. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }140
Since 140 is less than 150, stop the division. The reminder is 140. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}