Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

89x^{2}-6x+4=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
89x^{2}-6x+4-7=7-7
Subtract 7 from both sides of the equation.
89x^{2}-6x+4-7=0
Subtracting 7 from itself leaves 0.
89x^{2}-6x-3=0
Subtract 7 from 4.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 89\left(-3\right)}}{2\times 89}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 89 for a, -6 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 89\left(-3\right)}}{2\times 89}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-356\left(-3\right)}}{2\times 89}
Multiply -4 times 89.
x=\frac{-\left(-6\right)±\sqrt{36+1068}}{2\times 89}
Multiply -356 times -3.
x=\frac{-\left(-6\right)±\sqrt{1104}}{2\times 89}
Add 36 to 1068.
x=\frac{-\left(-6\right)±4\sqrt{69}}{2\times 89}
Take the square root of 1104.
x=\frac{6±4\sqrt{69}}{2\times 89}
The opposite of -6 is 6.
x=\frac{6±4\sqrt{69}}{178}
Multiply 2 times 89.
x=\frac{4\sqrt{69}+6}{178}
Now solve the equation x=\frac{6±4\sqrt{69}}{178} when ± is plus. Add 6 to 4\sqrt{69}.
x=\frac{2\sqrt{69}+3}{89}
Divide 6+4\sqrt{69} by 178.
x=\frac{6-4\sqrt{69}}{178}
Now solve the equation x=\frac{6±4\sqrt{69}}{178} when ± is minus. Subtract 4\sqrt{69} from 6.
x=\frac{3-2\sqrt{69}}{89}
Divide 6-4\sqrt{69} by 178.
x=\frac{2\sqrt{69}+3}{89} x=\frac{3-2\sqrt{69}}{89}
The equation is now solved.
89x^{2}-6x+4=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
89x^{2}-6x+4-4=7-4
Subtract 4 from both sides of the equation.
89x^{2}-6x=7-4
Subtracting 4 from itself leaves 0.
89x^{2}-6x=3
Subtract 4 from 7.
\frac{89x^{2}-6x}{89}=\frac{3}{89}
Divide both sides by 89.
x^{2}-\frac{6}{89}x=\frac{3}{89}
Dividing by 89 undoes the multiplication by 89.
x^{2}-\frac{6}{89}x+\left(-\frac{3}{89}\right)^{2}=\frac{3}{89}+\left(-\frac{3}{89}\right)^{2}
Divide -\frac{6}{89}, the coefficient of the x term, by 2 to get -\frac{3}{89}. Then add the square of -\frac{3}{89} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{89}x+\frac{9}{7921}=\frac{3}{89}+\frac{9}{7921}
Square -\frac{3}{89} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{89}x+\frac{9}{7921}=\frac{276}{7921}
Add \frac{3}{89} to \frac{9}{7921} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{89}\right)^{2}=\frac{276}{7921}
Factor x^{2}-\frac{6}{89}x+\frac{9}{7921}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{89}\right)^{2}}=\sqrt{\frac{276}{7921}}
Take the square root of both sides of the equation.
x-\frac{3}{89}=\frac{2\sqrt{69}}{89} x-\frac{3}{89}=-\frac{2\sqrt{69}}{89}
Simplify.
x=\frac{2\sqrt{69}+3}{89} x=\frac{3-2\sqrt{69}}{89}
Add \frac{3}{89} to both sides of the equation.