Evaluate
\frac{89}{11}\approx 8.090909091
Factor
\frac{89}{11} = 8\frac{1}{11} = 8.090909090909092
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)89}\\\end{array}
Use the 1^{st} digit 8 from dividend 89
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)89}\\\end{array}
Since 8 is less than 11, use the next digit 9 from dividend 89 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)89}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89
\begin{array}{l}\phantom{11)}08\phantom{4}\\11\overline{)89}\\\phantom{11)}\underline{\phantom{}88\phantom{}}\\\phantom{11)9}1\\\end{array}
Find closest multiple of 11 to 89. We see that 8 \times 11 = 88 is the nearest. Now subtract 88 from 89 to get reminder 1. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }1
Since 1 is less than 11, stop the division. The reminder is 1. The topmost line 08 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}