Evaluate
\frac{177}{20}=8.85
Factor
\frac{3 \cdot 59}{2 ^ {2} \cdot 5} = 8\frac{17}{20} = 8.85
Share
Copied to clipboard
\begin{array}{l}\phantom{100)}\phantom{1}\\100\overline{)885}\\\end{array}
Use the 1^{st} digit 8 from dividend 885
\begin{array}{l}\phantom{100)}0\phantom{2}\\100\overline{)885}\\\end{array}
Since 8 is less than 100, use the next digit 8 from dividend 885 and add 0 to the quotient
\begin{array}{l}\phantom{100)}0\phantom{3}\\100\overline{)885}\\\end{array}
Use the 2^{nd} digit 8 from dividend 885
\begin{array}{l}\phantom{100)}00\phantom{4}\\100\overline{)885}\\\end{array}
Since 88 is less than 100, use the next digit 5 from dividend 885 and add 0 to the quotient
\begin{array}{l}\phantom{100)}00\phantom{5}\\100\overline{)885}\\\end{array}
Use the 3^{rd} digit 5 from dividend 885
\begin{array}{l}\phantom{100)}008\phantom{6}\\100\overline{)885}\\\phantom{100)}\underline{\phantom{}800\phantom{}}\\\phantom{100)9}85\\\end{array}
Find closest multiple of 100 to 885. We see that 8 \times 100 = 800 is the nearest. Now subtract 800 from 885 to get reminder 85. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }85
Since 85 is less than 100, stop the division. The reminder is 85. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}