Evaluate
52
Factor
2^{2}\times 13
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)884}\\\end{array}
Use the 1^{st} digit 8 from dividend 884
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)884}\\\end{array}
Since 8 is less than 17, use the next digit 8 from dividend 884 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)884}\\\end{array}
Use the 2^{nd} digit 8 from dividend 884
\begin{array}{l}\phantom{17)}05\phantom{4}\\17\overline{)884}\\\phantom{17)}\underline{\phantom{}85\phantom{9}}\\\phantom{17)9}3\\\end{array}
Find closest multiple of 17 to 88. We see that 5 \times 17 = 85 is the nearest. Now subtract 85 from 88 to get reminder 3. Add 5 to quotient.
\begin{array}{l}\phantom{17)}05\phantom{5}\\17\overline{)884}\\\phantom{17)}\underline{\phantom{}85\phantom{9}}\\\phantom{17)9}34\\\end{array}
Use the 3^{rd} digit 4 from dividend 884
\begin{array}{l}\phantom{17)}052\phantom{6}\\17\overline{)884}\\\phantom{17)}\underline{\phantom{}85\phantom{9}}\\\phantom{17)9}34\\\phantom{17)}\underline{\phantom{9}34\phantom{}}\\\phantom{17)999}0\\\end{array}
Find closest multiple of 17 to 34. We see that 2 \times 17 = 34 is the nearest. Now subtract 34 from 34 to get reminder 0. Add 2 to quotient.
\text{Quotient: }52 \text{Reminder: }0
Since 0 is less than 17, stop the division. The reminder is 0. The topmost line 052 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 52.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}