Solve for x
x = -\frac{2390837}{6125} = -390\frac{2087}{6125} \approx -390.340734694
Graph
Share
Copied to clipboard
\frac{390+16.667}{340-x}=\frac{490}{880}
Divide both sides by 880.
\frac{390+16.667}{340-x}=\frac{49}{88}
Reduce the fraction \frac{490}{880} to lowest terms by extracting and canceling out 10.
-88\left(390+16.667\right)=49\left(x-340\right)
Variable x cannot be equal to 340 since division by zero is not defined. Multiply both sides of the equation by 88\left(x-340\right), the least common multiple of 340-x,88.
-88\times 406.667=49\left(x-340\right)
Add 390 and 16.667 to get 406.667.
-35786.696=49\left(x-340\right)
Multiply -88 and 406.667 to get -35786.696.
-35786.696=49x-16660
Use the distributive property to multiply 49 by x-340.
49x-16660=-35786.696
Swap sides so that all variable terms are on the left hand side.
49x=-35786.696+16660
Add 16660 to both sides.
49x=-19126.696
Add -35786.696 and 16660 to get -19126.696.
x=\frac{-19126.696}{49}
Divide both sides by 49.
x=\frac{-19126696}{49000}
Expand \frac{-19126.696}{49} by multiplying both numerator and the denominator by 1000.
x=-\frac{2390837}{6125}
Reduce the fraction \frac{-19126696}{49000} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}