Evaluate
\frac{110}{3}\approx 36.666666667
Factor
\frac{2 \cdot 5 \cdot 11}{3} = 36\frac{2}{3} = 36.666666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)880}\\\end{array}
Use the 1^{st} digit 8 from dividend 880
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)880}\\\end{array}
Since 8 is less than 24, use the next digit 8 from dividend 880 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)880}\\\end{array}
Use the 2^{nd} digit 8 from dividend 880
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)880}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}16\\\end{array}
Find closest multiple of 24 to 88. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 88 to get reminder 16. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)880}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}160\\\end{array}
Use the 3^{rd} digit 0 from dividend 880
\begin{array}{l}\phantom{24)}036\phantom{6}\\24\overline{)880}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}160\\\phantom{24)}\underline{\phantom{}144\phantom{}}\\\phantom{24)9}16\\\end{array}
Find closest multiple of 24 to 160. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 160 to get reminder 16. Add 6 to quotient.
\text{Quotient: }36 \text{Reminder: }16
Since 16 is less than 24, stop the division. The reminder is 16. The topmost line 036 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}