Evaluate
\frac{5025039}{98}-36x
Factor
\frac{3\left(1675013-1176x\right)}{98}
Graph
Quiz
Polynomial
5 problems similar to:
88+188+5000000 \div 98- { 2 }^{ 2 } \times 9x-(78 \times 0.25)-1
Share
Copied to clipboard
276+\frac{5000000}{98}-2^{2}\times 9x-78\times 0.25-1
Add 88 and 188 to get 276.
276+\frac{2500000}{49}-2^{2}\times 9x-78\times 0.25-1
Reduce the fraction \frac{5000000}{98} to lowest terms by extracting and canceling out 2.
\frac{13524}{49}+\frac{2500000}{49}-2^{2}\times 9x-78\times 0.25-1
Convert 276 to fraction \frac{13524}{49}.
\frac{13524+2500000}{49}-2^{2}\times 9x-78\times 0.25-1
Since \frac{13524}{49} and \frac{2500000}{49} have the same denominator, add them by adding their numerators.
\frac{2513524}{49}-2^{2}\times 9x-78\times 0.25-1
Add 13524 and 2500000 to get 2513524.
\frac{2513524}{49}-4\times 9x-78\times 0.25-1
Calculate 2 to the power of 2 and get 4.
\frac{2513524}{49}-36x-78\times 0.25-1
Multiply 4 and 9 to get 36.
\frac{2513524}{49}-36x-19.5-1
Multiply 78 and 0.25 to get 19.5.
\frac{2513524}{49}-36x-\frac{39}{2}-1
Convert decimal number 19.5 to fraction \frac{195}{10}. Reduce the fraction \frac{195}{10} to lowest terms by extracting and canceling out 5.
\frac{5027048}{98}-36x-\frac{1911}{98}-1
Least common multiple of 49 and 2 is 98. Convert \frac{2513524}{49} and \frac{39}{2} to fractions with denominator 98.
\frac{5027048-1911}{98}-36x-1
Since \frac{5027048}{98} and \frac{1911}{98} have the same denominator, subtract them by subtracting their numerators.
\frac{5025137}{98}-36x-1
Subtract 1911 from 5027048 to get 5025137.
\frac{5025137}{98}-36x-\frac{98}{98}
Convert 1 to fraction \frac{98}{98}.
\frac{5025137-98}{98}-36x
Since \frac{5025137}{98} and \frac{98}{98} have the same denominator, subtract them by subtracting their numerators.
\frac{5025039}{98}-36x
Subtract 98 from 5025137 to get 5025039.
factor(276+\frac{5000000}{98}-2^{2}\times 9x-78\times 0.25-1)
Add 88 and 188 to get 276.
factor(276+\frac{2500000}{49}-2^{2}\times 9x-78\times 0.25-1)
Reduce the fraction \frac{5000000}{98} to lowest terms by extracting and canceling out 2.
factor(\frac{13524}{49}+\frac{2500000}{49}-2^{2}\times 9x-78\times 0.25-1)
Convert 276 to fraction \frac{13524}{49}.
factor(\frac{13524+2500000}{49}-2^{2}\times 9x-78\times 0.25-1)
Since \frac{13524}{49} and \frac{2500000}{49} have the same denominator, add them by adding their numerators.
factor(\frac{2513524}{49}-2^{2}\times 9x-78\times 0.25-1)
Add 13524 and 2500000 to get 2513524.
factor(\frac{2513524}{49}-4\times 9x-78\times 0.25-1)
Calculate 2 to the power of 2 and get 4.
factor(\frac{2513524}{49}-36x-78\times 0.25-1)
Multiply 4 and 9 to get 36.
factor(\frac{2513524}{49}-36x-19.5-1)
Multiply 78 and 0.25 to get 19.5.
factor(\frac{2513524}{49}-36x-\frac{39}{2}-1)
Convert decimal number 19.5 to fraction \frac{195}{10}. Reduce the fraction \frac{195}{10} to lowest terms by extracting and canceling out 5.
factor(\frac{5027048}{98}-36x-\frac{1911}{98}-1)
Least common multiple of 49 and 2 is 98. Convert \frac{2513524}{49} and \frac{39}{2} to fractions with denominator 98.
factor(\frac{5027048-1911}{98}-36x-1)
Since \frac{5027048}{98} and \frac{1911}{98} have the same denominator, subtract them by subtracting their numerators.
factor(\frac{5025137}{98}-36x-1)
Subtract 1911 from 5027048 to get 5025137.
factor(\frac{5025137}{98}-36x-\frac{98}{98})
Convert 1 to fraction \frac{98}{98}.
factor(\frac{5025137-98}{98}-36x)
Since \frac{5025137}{98} and \frac{98}{98} have the same denominator, subtract them by subtracting their numerators.
factor(\frac{5025039}{98}-36x)
Subtract 98 from 5025137 to get 5025039.
\frac{3\left(1675013-1176x\right)}{98}
Factor out \frac{3}{98}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}