Solve for x (complex solution)
x=\frac{\sqrt{194}i}{22}+\frac{1}{11}\approx 0.090909091+0.633108558i
x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}\approx 0.090909091-0.633108558i
Graph
Share
Copied to clipboard
88x^{2}-16x=-36
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
88x^{2}-16x-\left(-36\right)=-36-\left(-36\right)
Add 36 to both sides of the equation.
88x^{2}-16x-\left(-36\right)=0
Subtracting -36 from itself leaves 0.
88x^{2}-16x+36=0
Subtract -36 from 0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 88\times 36}}{2\times 88}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 88 for a, -16 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 88\times 36}}{2\times 88}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-352\times 36}}{2\times 88}
Multiply -4 times 88.
x=\frac{-\left(-16\right)±\sqrt{256-12672}}{2\times 88}
Multiply -352 times 36.
x=\frac{-\left(-16\right)±\sqrt{-12416}}{2\times 88}
Add 256 to -12672.
x=\frac{-\left(-16\right)±8\sqrt{194}i}{2\times 88}
Take the square root of -12416.
x=\frac{16±8\sqrt{194}i}{2\times 88}
The opposite of -16 is 16.
x=\frac{16±8\sqrt{194}i}{176}
Multiply 2 times 88.
x=\frac{16+8\sqrt{194}i}{176}
Now solve the equation x=\frac{16±8\sqrt{194}i}{176} when ± is plus. Add 16 to 8i\sqrt{194}.
x=\frac{\sqrt{194}i}{22}+\frac{1}{11}
Divide 16+8i\sqrt{194} by 176.
x=\frac{-8\sqrt{194}i+16}{176}
Now solve the equation x=\frac{16±8\sqrt{194}i}{176} when ± is minus. Subtract 8i\sqrt{194} from 16.
x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
Divide 16-8i\sqrt{194} by 176.
x=\frac{\sqrt{194}i}{22}+\frac{1}{11} x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
The equation is now solved.
88x^{2}-16x=-36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{88x^{2}-16x}{88}=-\frac{36}{88}
Divide both sides by 88.
x^{2}+\left(-\frac{16}{88}\right)x=-\frac{36}{88}
Dividing by 88 undoes the multiplication by 88.
x^{2}-\frac{2}{11}x=-\frac{36}{88}
Reduce the fraction \frac{-16}{88} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{2}{11}x=-\frac{9}{22}
Reduce the fraction \frac{-36}{88} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{2}{11}x+\left(-\frac{1}{11}\right)^{2}=-\frac{9}{22}+\left(-\frac{1}{11}\right)^{2}
Divide -\frac{2}{11}, the coefficient of the x term, by 2 to get -\frac{1}{11}. Then add the square of -\frac{1}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{9}{22}+\frac{1}{121}
Square -\frac{1}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{11}x+\frac{1}{121}=-\frac{97}{242}
Add -\frac{9}{22} to \frac{1}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{11}\right)^{2}=-\frac{97}{242}
Factor x^{2}-\frac{2}{11}x+\frac{1}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{11}\right)^{2}}=\sqrt{-\frac{97}{242}}
Take the square root of both sides of the equation.
x-\frac{1}{11}=\frac{\sqrt{194}i}{22} x-\frac{1}{11}=-\frac{\sqrt{194}i}{22}
Simplify.
x=\frac{\sqrt{194}i}{22}+\frac{1}{11} x=-\frac{\sqrt{194}i}{22}+\frac{1}{11}
Add \frac{1}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}