Evaluate
12
Factor
2^{2}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{73)}\phantom{1}\\73\overline{)876}\\\end{array}
Use the 1^{st} digit 8 from dividend 876
\begin{array}{l}\phantom{73)}0\phantom{2}\\73\overline{)876}\\\end{array}
Since 8 is less than 73, use the next digit 7 from dividend 876 and add 0 to the quotient
\begin{array}{l}\phantom{73)}0\phantom{3}\\73\overline{)876}\\\end{array}
Use the 2^{nd} digit 7 from dividend 876
\begin{array}{l}\phantom{73)}01\phantom{4}\\73\overline{)876}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}14\\\end{array}
Find closest multiple of 73 to 87. We see that 1 \times 73 = 73 is the nearest. Now subtract 73 from 87 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{73)}01\phantom{5}\\73\overline{)876}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}146\\\end{array}
Use the 3^{rd} digit 6 from dividend 876
\begin{array}{l}\phantom{73)}012\phantom{6}\\73\overline{)876}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}146\\\phantom{73)}\underline{\phantom{}146\phantom{}}\\\phantom{73)999}0\\\end{array}
Find closest multiple of 73 to 146. We see that 2 \times 73 = 146 is the nearest. Now subtract 146 from 146 to get reminder 0. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }0
Since 0 is less than 73, stop the division. The reminder is 0. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}