Evaluate
\frac{871}{24}\approx 36.291666667
Factor
\frac{13 \cdot 67}{2 ^ {3} \cdot 3} = 36\frac{7}{24} = 36.291666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)871}\\\end{array}
Use the 1^{st} digit 8 from dividend 871
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)871}\\\end{array}
Since 8 is less than 24, use the next digit 7 from dividend 871 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)871}\\\end{array}
Use the 2^{nd} digit 7 from dividend 871
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)871}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}15\\\end{array}
Find closest multiple of 24 to 87. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 87 to get reminder 15. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)871}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}151\\\end{array}
Use the 3^{rd} digit 1 from dividend 871
\begin{array}{l}\phantom{24)}036\phantom{6}\\24\overline{)871}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}151\\\phantom{24)}\underline{\phantom{}144\phantom{}}\\\phantom{24)99}7\\\end{array}
Find closest multiple of 24 to 151. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 151 to get reminder 7. Add 6 to quotient.
\text{Quotient: }36 \text{Reminder: }7
Since 7 is less than 24, stop the division. The reminder is 7. The topmost line 036 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}