Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\begin{array}{l}\phantom{725)}\phantom{1}\\725\overline{)870}\\\end{array}
Use the 1^{st} digit 8 from dividend 870
\begin{array}{l}\phantom{725)}0\phantom{2}\\725\overline{)870}\\\end{array}
Since 8 is less than 725, use the next digit 7 from dividend 870 and add 0 to the quotient
\begin{array}{l}\phantom{725)}0\phantom{3}\\725\overline{)870}\\\end{array}
Use the 2^{nd} digit 7 from dividend 870
\begin{array}{l}\phantom{725)}00\phantom{4}\\725\overline{)870}\\\end{array}
Since 87 is less than 725, use the next digit 0 from dividend 870 and add 0 to the quotient
\begin{array}{l}\phantom{725)}00\phantom{5}\\725\overline{)870}\\\end{array}
Use the 3^{rd} digit 0 from dividend 870
\begin{array}{l}\phantom{725)}001\phantom{6}\\725\overline{)870}\\\phantom{725)}\underline{\phantom{}725\phantom{}}\\\phantom{725)}145\\\end{array}
Find closest multiple of 725 to 870. We see that 1 \times 725 = 725 is the nearest. Now subtract 725 from 870 to get reminder 145. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }145
Since 145 is less than 725, stop the division. The reminder is 145. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}