Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(87-x\right)
Factor out x.
-x^{2}+87x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-87±\sqrt{87^{2}}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-87±87}{2\left(-1\right)}
Take the square root of 87^{2}.
x=\frac{-87±87}{-2}
Multiply 2 times -1.
x=\frac{0}{-2}
Now solve the equation x=\frac{-87±87}{-2} when ± is plus. Add -87 to 87.
x=0
Divide 0 by -2.
x=-\frac{174}{-2}
Now solve the equation x=\frac{-87±87}{-2} when ± is minus. Subtract 87 from -87.
x=87
Divide -174 by -2.
-x^{2}+87x=-x\left(x-87\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 87 for x_{2}.