Evaluate
\frac{86948}{15}\approx 5796.533333333
Factor
\frac{2 ^ {2} \cdot 21737}{3 \cdot 5} = 5796\frac{8}{15} = 5796.533333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)86948}\\\end{array}
Use the 1^{st} digit 8 from dividend 86948
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)86948}\\\end{array}
Since 8 is less than 15, use the next digit 6 from dividend 86948 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)86948}\\\end{array}
Use the 2^{nd} digit 6 from dividend 86948
\begin{array}{l}\phantom{15)}05\phantom{4}\\15\overline{)86948}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)}11\\\end{array}
Find closest multiple of 15 to 86. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 86 to get reminder 11. Add 5 to quotient.
\begin{array}{l}\phantom{15)}05\phantom{5}\\15\overline{)86948}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)}119\\\end{array}
Use the 3^{rd} digit 9 from dividend 86948
\begin{array}{l}\phantom{15)}057\phantom{6}\\15\overline{)86948}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)}119\\\phantom{15)}\underline{\phantom{}105\phantom{99}}\\\phantom{15)9}14\\\end{array}
Find closest multiple of 15 to 119. We see that 7 \times 15 = 105 is the nearest. Now subtract 105 from 119 to get reminder 14. Add 7 to quotient.
\begin{array}{l}\phantom{15)}057\phantom{7}\\15\overline{)86948}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)}119\\\phantom{15)}\underline{\phantom{}105\phantom{99}}\\\phantom{15)9}144\\\end{array}
Use the 4^{th} digit 4 from dividend 86948
\begin{array}{l}\phantom{15)}0579\phantom{8}\\15\overline{)86948}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)}119\\\phantom{15)}\underline{\phantom{}105\phantom{99}}\\\phantom{15)9}144\\\phantom{15)}\underline{\phantom{9}135\phantom{9}}\\\phantom{15)999}9\\\end{array}
Find closest multiple of 15 to 144. We see that 9 \times 15 = 135 is the nearest. Now subtract 135 from 144 to get reminder 9. Add 9 to quotient.
\begin{array}{l}\phantom{15)}0579\phantom{9}\\15\overline{)86948}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)}119\\\phantom{15)}\underline{\phantom{}105\phantom{99}}\\\phantom{15)9}144\\\phantom{15)}\underline{\phantom{9}135\phantom{9}}\\\phantom{15)999}98\\\end{array}
Use the 5^{th} digit 8 from dividend 86948
\begin{array}{l}\phantom{15)}05796\phantom{10}\\15\overline{)86948}\\\phantom{15)}\underline{\phantom{}75\phantom{999}}\\\phantom{15)}119\\\phantom{15)}\underline{\phantom{}105\phantom{99}}\\\phantom{15)9}144\\\phantom{15)}\underline{\phantom{9}135\phantom{9}}\\\phantom{15)999}98\\\phantom{15)}\underline{\phantom{999}90\phantom{}}\\\phantom{15)9999}8\\\end{array}
Find closest multiple of 15 to 98. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 98 to get reminder 8. Add 6 to quotient.
\text{Quotient: }5796 \text{Reminder: }8
Since 8 is less than 15, stop the division. The reminder is 8. The topmost line 05796 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5796.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}