Evaluate
\frac{217}{6}\approx 36.166666667
Factor
\frac{7 \cdot 31}{2 \cdot 3} = 36\frac{1}{6} = 36.166666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)868}\\\end{array}
Use the 1^{st} digit 8 from dividend 868
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)868}\\\end{array}
Since 8 is less than 24, use the next digit 6 from dividend 868 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)868}\\\end{array}
Use the 2^{nd} digit 6 from dividend 868
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)868}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}14\\\end{array}
Find closest multiple of 24 to 86. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 86 to get reminder 14. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)868}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}148\\\end{array}
Use the 3^{rd} digit 8 from dividend 868
\begin{array}{l}\phantom{24)}036\phantom{6}\\24\overline{)868}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)}148\\\phantom{24)}\underline{\phantom{}144\phantom{}}\\\phantom{24)99}4\\\end{array}
Find closest multiple of 24 to 148. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 148 to get reminder 4. Add 6 to quotient.
\text{Quotient: }36 \text{Reminder: }4
Since 4 is less than 24, stop the division. The reminder is 4. The topmost line 036 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}