Evaluate
\frac{868}{255}\approx 3.403921569
Factor
\frac{2 ^ {2} \cdot 7 \cdot 31}{3 \cdot 5 \cdot 17} = 3\frac{103}{255} = 3.403921568627451
Share
Copied to clipboard
\begin{array}{l}\phantom{255)}\phantom{1}\\255\overline{)868}\\\end{array}
Use the 1^{st} digit 8 from dividend 868
\begin{array}{l}\phantom{255)}0\phantom{2}\\255\overline{)868}\\\end{array}
Since 8 is less than 255, use the next digit 6 from dividend 868 and add 0 to the quotient
\begin{array}{l}\phantom{255)}0\phantom{3}\\255\overline{)868}\\\end{array}
Use the 2^{nd} digit 6 from dividend 868
\begin{array}{l}\phantom{255)}00\phantom{4}\\255\overline{)868}\\\end{array}
Since 86 is less than 255, use the next digit 8 from dividend 868 and add 0 to the quotient
\begin{array}{l}\phantom{255)}00\phantom{5}\\255\overline{)868}\\\end{array}
Use the 3^{rd} digit 8 from dividend 868
\begin{array}{l}\phantom{255)}003\phantom{6}\\255\overline{)868}\\\phantom{255)}\underline{\phantom{}765\phantom{}}\\\phantom{255)}103\\\end{array}
Find closest multiple of 255 to 868. We see that 3 \times 255 = 765 is the nearest. Now subtract 765 from 868 to get reminder 103. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }103
Since 103 is less than 255, stop the division. The reminder is 103. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}