Evaluate
\frac{12}{5}=2.4
Factor
\frac{2 ^ {2} \cdot 3}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)864}\\\end{array}
Use the 1^{st} digit 8 from dividend 864
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)864}\\\end{array}
Since 8 is less than 360, use the next digit 6 from dividend 864 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)864}\\\end{array}
Use the 2^{nd} digit 6 from dividend 864
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)864}\\\end{array}
Since 86 is less than 360, use the next digit 4 from dividend 864 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)864}\\\end{array}
Use the 3^{rd} digit 4 from dividend 864
\begin{array}{l}\phantom{360)}002\phantom{6}\\360\overline{)864}\\\phantom{360)}\underline{\phantom{}720\phantom{}}\\\phantom{360)}144\\\end{array}
Find closest multiple of 360 to 864. We see that 2 \times 360 = 720 is the nearest. Now subtract 720 from 864 to get reminder 144. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }144
Since 144 is less than 360, stop the division. The reminder is 144. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}