Evaluate
\frac{43}{15}\approx 2.866666667
Factor
\frac{43}{3 \cdot 5} = 2\frac{13}{15} = 2.8666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)860}\\\end{array}
Use the 1^{st} digit 8 from dividend 860
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)860}\\\end{array}
Since 8 is less than 300, use the next digit 6 from dividend 860 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)860}\\\end{array}
Use the 2^{nd} digit 6 from dividend 860
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)860}\\\end{array}
Since 86 is less than 300, use the next digit 0 from dividend 860 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)860}\\\end{array}
Use the 3^{rd} digit 0 from dividend 860
\begin{array}{l}\phantom{300)}002\phantom{6}\\300\overline{)860}\\\phantom{300)}\underline{\phantom{}600\phantom{}}\\\phantom{300)}260\\\end{array}
Find closest multiple of 300 to 860. We see that 2 \times 300 = 600 is the nearest. Now subtract 600 from 860 to get reminder 260. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }260
Since 260 is less than 300, stop the division. The reminder is 260. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}