Solve for x
x=\frac{\sqrt{45096913}-6715}{18}\approx 0.02352867
x=\frac{-\sqrt{45096913}-6715}{18}\approx -746.134639781
Graph
Share
Copied to clipboard
6715x+9x^{2}=158
Multiply both sides of the equation by 79.
6715x+9x^{2}-158=0
Subtract 158 from both sides.
9x^{2}+6715x-158=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6715±\sqrt{6715^{2}-4\times 9\left(-158\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 6715 for b, and -158 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6715±\sqrt{45091225-4\times 9\left(-158\right)}}{2\times 9}
Square 6715.
x=\frac{-6715±\sqrt{45091225-36\left(-158\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-6715±\sqrt{45091225+5688}}{2\times 9}
Multiply -36 times -158.
x=\frac{-6715±\sqrt{45096913}}{2\times 9}
Add 45091225 to 5688.
x=\frac{-6715±\sqrt{45096913}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{45096913}-6715}{18}
Now solve the equation x=\frac{-6715±\sqrt{45096913}}{18} when ± is plus. Add -6715 to \sqrt{45096913}.
x=\frac{-\sqrt{45096913}-6715}{18}
Now solve the equation x=\frac{-6715±\sqrt{45096913}}{18} when ± is minus. Subtract \sqrt{45096913} from -6715.
x=\frac{\sqrt{45096913}-6715}{18} x=\frac{-\sqrt{45096913}-6715}{18}
The equation is now solved.
6715x+9x^{2}=158
Multiply both sides of the equation by 79.
9x^{2}+6715x=158
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}+6715x}{9}=\frac{158}{9}
Divide both sides by 9.
x^{2}+\frac{6715}{9}x=\frac{158}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{6715}{9}x+\left(\frac{6715}{18}\right)^{2}=\frac{158}{9}+\left(\frac{6715}{18}\right)^{2}
Divide \frac{6715}{9}, the coefficient of the x term, by 2 to get \frac{6715}{18}. Then add the square of \frac{6715}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6715}{9}x+\frac{45091225}{324}=\frac{158}{9}+\frac{45091225}{324}
Square \frac{6715}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6715}{9}x+\frac{45091225}{324}=\frac{45096913}{324}
Add \frac{158}{9} to \frac{45091225}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6715}{18}\right)^{2}=\frac{45096913}{324}
Factor x^{2}+\frac{6715}{9}x+\frac{45091225}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6715}{18}\right)^{2}}=\sqrt{\frac{45096913}{324}}
Take the square root of both sides of the equation.
x+\frac{6715}{18}=\frac{\sqrt{45096913}}{18} x+\frac{6715}{18}=-\frac{\sqrt{45096913}}{18}
Simplify.
x=\frac{\sqrt{45096913}-6715}{18} x=\frac{-\sqrt{45096913}-6715}{18}
Subtract \frac{6715}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}