Evaluate
\frac{857}{14}\approx 61.214285714
Factor
\frac{857}{2 \cdot 7} = 61\frac{3}{14} = 61.214285714285715
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)857}\\\end{array}
Use the 1^{st} digit 8 from dividend 857
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)857}\\\end{array}
Since 8 is less than 14, use the next digit 5 from dividend 857 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)857}\\\end{array}
Use the 2^{nd} digit 5 from dividend 857
\begin{array}{l}\phantom{14)}06\phantom{4}\\14\overline{)857}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}1\\\end{array}
Find closest multiple of 14 to 85. We see that 6 \times 14 = 84 is the nearest. Now subtract 84 from 85 to get reminder 1. Add 6 to quotient.
\begin{array}{l}\phantom{14)}06\phantom{5}\\14\overline{)857}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}17\\\end{array}
Use the 3^{rd} digit 7 from dividend 857
\begin{array}{l}\phantom{14)}061\phantom{6}\\14\overline{)857}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}17\\\phantom{14)}\underline{\phantom{9}14\phantom{}}\\\phantom{14)99}3\\\end{array}
Find closest multiple of 14 to 17. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 17 to get reminder 3. Add 1 to quotient.
\text{Quotient: }61 \text{Reminder: }3
Since 3 is less than 14, stop the division. The reminder is 3. The topmost line 061 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}