Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{l}\phantom{9768)}\phantom{1}\\9768\overline{)8556768}\\\end{array}
Use the 1^{st} digit 8 from dividend 8556768
\begin{array}{l}\phantom{9768)}0\phantom{2}\\9768\overline{)8556768}\\\end{array}
Since 8 is less than 9768, use the next digit 5 from dividend 8556768 and add 0 to the quotient
\begin{array}{l}\phantom{9768)}0\phantom{3}\\9768\overline{)8556768}\\\end{array}
Use the 2^{nd} digit 5 from dividend 8556768
\begin{array}{l}\phantom{9768)}00\phantom{4}\\9768\overline{)8556768}\\\end{array}
Since 85 is less than 9768, use the next digit 5 from dividend 8556768 and add 0 to the quotient
\begin{array}{l}\phantom{9768)}00\phantom{5}\\9768\overline{)8556768}\\\end{array}
Use the 3^{rd} digit 5 from dividend 8556768
\begin{array}{l}\phantom{9768)}000\phantom{6}\\9768\overline{)8556768}\\\end{array}
Since 855 is less than 9768, use the next digit 6 from dividend 8556768 and add 0 to the quotient
\begin{array}{l}\phantom{9768)}000\phantom{7}\\9768\overline{)8556768}\\\end{array}
Use the 4^{th} digit 6 from dividend 8556768
\begin{array}{l}\phantom{9768)}0000\phantom{8}\\9768\overline{)8556768}\\\end{array}
Since 8556 is less than 9768, use the next digit 7 from dividend 8556768 and add 0 to the quotient
\begin{array}{l}\phantom{9768)}0000\phantom{9}\\9768\overline{)8556768}\\\end{array}
Use the 5^{th} digit 7 from dividend 8556768
\begin{array}{l}\phantom{9768)}00008\phantom{10}\\9768\overline{)8556768}\\\phantom{9768)}\underline{\phantom{}78144\phantom{99}}\\\phantom{9768)9}7423\\\end{array}
Find closest multiple of 9768 to 85567. We see that 8 \times 9768 = 78144 is the nearest. Now subtract 78144 from 85567 to get reminder 7423. Add 8 to quotient.
\begin{array}{l}\phantom{9768)}00008\phantom{11}\\9768\overline{)8556768}\\\phantom{9768)}\underline{\phantom{}78144\phantom{99}}\\\phantom{9768)9}74236\\\end{array}
Use the 6^{th} digit 6 from dividend 8556768
\begin{array}{l}\phantom{9768)}000087\phantom{12}\\9768\overline{)8556768}\\\phantom{9768)}\underline{\phantom{}78144\phantom{99}}\\\phantom{9768)9}74236\\\phantom{9768)}\underline{\phantom{9}68376\phantom{9}}\\\phantom{9768)99}5860\\\end{array}
Find closest multiple of 9768 to 74236. We see that 7 \times 9768 = 68376 is the nearest. Now subtract 68376 from 74236 to get reminder 5860. Add 7 to quotient.
\begin{array}{l}\phantom{9768)}000087\phantom{13}\\9768\overline{)8556768}\\\phantom{9768)}\underline{\phantom{}78144\phantom{99}}\\\phantom{9768)9}74236\\\phantom{9768)}\underline{\phantom{9}68376\phantom{9}}\\\phantom{9768)99}58608\\\end{array}
Use the 7^{th} digit 8 from dividend 8556768
\begin{array}{l}\phantom{9768)}0000876\phantom{14}\\9768\overline{)8556768}\\\phantom{9768)}\underline{\phantom{}78144\phantom{99}}\\\phantom{9768)9}74236\\\phantom{9768)}\underline{\phantom{9}68376\phantom{9}}\\\phantom{9768)99}58608\\\phantom{9768)}\underline{\phantom{99}58608\phantom{}}\\\phantom{9768)9999999}0\\\end{array}
Find closest multiple of 9768 to 58608. We see that 6 \times 9768 = 58608 is the nearest. Now subtract 58608 from 58608 to get reminder 0. Add 6 to quotient.
\text{Quotient: }876 \text{Reminder: }0
Since 0 is less than 9768, stop the division. The reminder is 0. The topmost line 0000876 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 876.