Evaluate
\frac{855}{14}\approx 61.071428571
Factor
\frac{3 ^ {2} \cdot 5 \cdot 19}{2 \cdot 7} = 61\frac{1}{14} = 61.07142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)855}\\\end{array}
Use the 1^{st} digit 8 from dividend 855
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)855}\\\end{array}
Since 8 is less than 14, use the next digit 5 from dividend 855 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)855}\\\end{array}
Use the 2^{nd} digit 5 from dividend 855
\begin{array}{l}\phantom{14)}06\phantom{4}\\14\overline{)855}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}1\\\end{array}
Find closest multiple of 14 to 85. We see that 6 \times 14 = 84 is the nearest. Now subtract 84 from 85 to get reminder 1. Add 6 to quotient.
\begin{array}{l}\phantom{14)}06\phantom{5}\\14\overline{)855}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}15\\\end{array}
Use the 3^{rd} digit 5 from dividend 855
\begin{array}{l}\phantom{14)}061\phantom{6}\\14\overline{)855}\\\phantom{14)}\underline{\phantom{}84\phantom{9}}\\\phantom{14)9}15\\\phantom{14)}\underline{\phantom{9}14\phantom{}}\\\phantom{14)99}1\\\end{array}
Find closest multiple of 14 to 15. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 15 to get reminder 1. Add 1 to quotient.
\text{Quotient: }61 \text{Reminder: }1
Since 1 is less than 14, stop the division. The reminder is 1. The topmost line 061 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}