Evaluate
\frac{285}{4}=71.25
Factor
\frac{3 \cdot 5 \cdot 19}{2 ^ {2}} = 71\frac{1}{4} = 71.25
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)855}\\\end{array}
Use the 1^{st} digit 8 from dividend 855
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)855}\\\end{array}
Since 8 is less than 12, use the next digit 5 from dividend 855 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)855}\\\end{array}
Use the 2^{nd} digit 5 from dividend 855
\begin{array}{l}\phantom{12)}07\phantom{4}\\12\overline{)855}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)9}1\\\end{array}
Find closest multiple of 12 to 85. We see that 7 \times 12 = 84 is the nearest. Now subtract 84 from 85 to get reminder 1. Add 7 to quotient.
\begin{array}{l}\phantom{12)}07\phantom{5}\\12\overline{)855}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)9}15\\\end{array}
Use the 3^{rd} digit 5 from dividend 855
\begin{array}{l}\phantom{12)}071\phantom{6}\\12\overline{)855}\\\phantom{12)}\underline{\phantom{}84\phantom{9}}\\\phantom{12)9}15\\\phantom{12)}\underline{\phantom{9}12\phantom{}}\\\phantom{12)99}3\\\end{array}
Find closest multiple of 12 to 15. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 15 to get reminder 3. Add 1 to quotient.
\text{Quotient: }71 \text{Reminder: }3
Since 3 is less than 12, stop the division. The reminder is 3. The topmost line 071 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 71.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}