Solve for k
k=-8507+\frac{80}{m}
m\neq 0
Solve for m
m=\frac{80}{k+8507}
k\neq -8507
Share
Copied to clipboard
80-km-m=8506m
Swap sides so that all variable terms are on the left hand side.
-km-m=8506m-80
Subtract 80 from both sides.
-km=8506m-80+m
Add m to both sides.
-km=8507m-80
Combine 8506m and m to get 8507m.
\left(-m\right)k=8507m-80
The equation is in standard form.
\frac{\left(-m\right)k}{-m}=\frac{8507m-80}{-m}
Divide both sides by -m.
k=\frac{8507m-80}{-m}
Dividing by -m undoes the multiplication by -m.
k=-8507+\frac{80}{m}
Divide 8507m-80 by -m.
8506m+km=80-m
Add km to both sides.
8506m+km+m=80
Add m to both sides.
8507m+km=80
Combine 8506m and m to get 8507m.
\left(8507+k\right)m=80
Combine all terms containing m.
\left(k+8507\right)m=80
The equation is in standard form.
\frac{\left(k+8507\right)m}{k+8507}=\frac{80}{k+8507}
Divide both sides by 8507+k.
m=\frac{80}{k+8507}
Dividing by 8507+k undoes the multiplication by 8507+k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}