Evaluate
\frac{1971}{22}\approx 89.590909091
Factor
\frac{73 \cdot 3 ^ {3}}{2 \cdot 11} = 89\frac{13}{22} = 89.5909090909091
Share
Copied to clipboard
85.5+\frac{9}{11}\times 5
Subtract 21 from 30 to get 9.
85.5+\frac{9\times 5}{11}
Express \frac{9}{11}\times 5 as a single fraction.
85.5+\frac{45}{11}
Multiply 9 and 5 to get 45.
\frac{171}{2}+\frac{45}{11}
Convert decimal number 85.5 to fraction \frac{855}{10}. Reduce the fraction \frac{855}{10} to lowest terms by extracting and canceling out 5.
\frac{1881}{22}+\frac{90}{22}
Least common multiple of 2 and 11 is 22. Convert \frac{171}{2} and \frac{45}{11} to fractions with denominator 22.
\frac{1881+90}{22}
Since \frac{1881}{22} and \frac{90}{22} have the same denominator, add them by adding their numerators.
\frac{1971}{22}
Add 1881 and 90 to get 1971.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}