Evaluate
\frac{17}{12}\approx 1.416666667
Factor
\frac{17}{2 ^ {2} \cdot 3} = 1\frac{5}{12} = 1.4166666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)85}\\\end{array}
Use the 1^{st} digit 8 from dividend 85
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)85}\\\end{array}
Since 8 is less than 60, use the next digit 5 from dividend 85 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)85}\\\end{array}
Use the 2^{nd} digit 5 from dividend 85
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)85}\\\phantom{60)}\underline{\phantom{}60\phantom{}}\\\phantom{60)}25\\\end{array}
Find closest multiple of 60 to 85. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 85 to get reminder 25. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }25
Since 25 is less than 60, stop the division. The reminder is 25. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}