Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-10=85
Swap sides so that all variable terms are on the left hand side.
2x^{2}=85+10
Add 10 to both sides.
2x^{2}=95
Add 85 and 10 to get 95.
x^{2}=\frac{95}{2}
Divide both sides by 2.
x=\frac{\sqrt{190}}{2} x=-\frac{\sqrt{190}}{2}
Take the square root of both sides of the equation.
2x^{2}-10=85
Swap sides so that all variable terms are on the left hand side.
2x^{2}-10-85=0
Subtract 85 from both sides.
2x^{2}-95=0
Subtract 85 from -10 to get -95.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-95\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -95 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-95\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-95\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{760}}{2\times 2}
Multiply -8 times -95.
x=\frac{0±2\sqrt{190}}{2\times 2}
Take the square root of 760.
x=\frac{0±2\sqrt{190}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{190}}{2}
Now solve the equation x=\frac{0±2\sqrt{190}}{4} when ± is plus.
x=-\frac{\sqrt{190}}{2}
Now solve the equation x=\frac{0±2\sqrt{190}}{4} when ± is minus.
x=\frac{\sqrt{190}}{2} x=-\frac{\sqrt{190}}{2}
The equation is now solved.