Evaluate
\frac{84941}{28}\approx 3033.607142857
Factor
\frac{29 ^ {2} \cdot 101}{2 ^ {2} \cdot 7} = 3033\frac{17}{28} = 3033.6071428571427
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)84941}\\\end{array}
Use the 1^{st} digit 8 from dividend 84941
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)84941}\\\end{array}
Since 8 is less than 28, use the next digit 4 from dividend 84941 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)84941}\\\end{array}
Use the 2^{nd} digit 4 from dividend 84941
\begin{array}{l}\phantom{28)}03\phantom{4}\\28\overline{)84941}\\\phantom{28)}\underline{\phantom{}84\phantom{999}}\\\phantom{28)99}0\\\end{array}
Find closest multiple of 28 to 84. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 84 to get reminder 0. Add 3 to quotient.
\begin{array}{l}\phantom{28)}03\phantom{5}\\28\overline{)84941}\\\phantom{28)}\underline{\phantom{}84\phantom{999}}\\\phantom{28)99}9\\\end{array}
Use the 3^{rd} digit 9 from dividend 84941
\begin{array}{l}\phantom{28)}030\phantom{6}\\28\overline{)84941}\\\phantom{28)}\underline{\phantom{}84\phantom{999}}\\\phantom{28)99}9\\\end{array}
Since 9 is less than 28, use the next digit 4 from dividend 84941 and add 0 to the quotient
\begin{array}{l}\phantom{28)}030\phantom{7}\\28\overline{)84941}\\\phantom{28)}\underline{\phantom{}84\phantom{999}}\\\phantom{28)99}94\\\end{array}
Use the 4^{th} digit 4 from dividend 84941
\begin{array}{l}\phantom{28)}0303\phantom{8}\\28\overline{)84941}\\\phantom{28)}\underline{\phantom{}84\phantom{999}}\\\phantom{28)99}94\\\phantom{28)}\underline{\phantom{99}84\phantom{9}}\\\phantom{28)99}10\\\end{array}
Find closest multiple of 28 to 94. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 94 to get reminder 10. Add 3 to quotient.
\begin{array}{l}\phantom{28)}0303\phantom{9}\\28\overline{)84941}\\\phantom{28)}\underline{\phantom{}84\phantom{999}}\\\phantom{28)99}94\\\phantom{28)}\underline{\phantom{99}84\phantom{9}}\\\phantom{28)99}101\\\end{array}
Use the 5^{th} digit 1 from dividend 84941
\begin{array}{l}\phantom{28)}03033\phantom{10}\\28\overline{)84941}\\\phantom{28)}\underline{\phantom{}84\phantom{999}}\\\phantom{28)99}94\\\phantom{28)}\underline{\phantom{99}84\phantom{9}}\\\phantom{28)99}101\\\phantom{28)}\underline{\phantom{999}84\phantom{}}\\\phantom{28)999}17\\\end{array}
Find closest multiple of 28 to 101. We see that 3 \times 28 = 84 is the nearest. Now subtract 84 from 101 to get reminder 17. Add 3 to quotient.
\text{Quotient: }3033 \text{Reminder: }17
Since 17 is less than 28, stop the division. The reminder is 17. The topmost line 03033 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3033.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}