Evaluate
56
Factor
2^{3}\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)840}\\\end{array}
Use the 1^{st} digit 8 from dividend 840
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)840}\\\end{array}
Since 8 is less than 15, use the next digit 4 from dividend 840 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)840}\\\end{array}
Use the 2^{nd} digit 4 from dividend 840
\begin{array}{l}\phantom{15)}05\phantom{4}\\15\overline{)840}\\\phantom{15)}\underline{\phantom{}75\phantom{9}}\\\phantom{15)9}9\\\end{array}
Find closest multiple of 15 to 84. We see that 5 \times 15 = 75 is the nearest. Now subtract 75 from 84 to get reminder 9. Add 5 to quotient.
\begin{array}{l}\phantom{15)}05\phantom{5}\\15\overline{)840}\\\phantom{15)}\underline{\phantom{}75\phantom{9}}\\\phantom{15)9}90\\\end{array}
Use the 3^{rd} digit 0 from dividend 840
\begin{array}{l}\phantom{15)}056\phantom{6}\\15\overline{)840}\\\phantom{15)}\underline{\phantom{}75\phantom{9}}\\\phantom{15)9}90\\\phantom{15)}\underline{\phantom{9}90\phantom{}}\\\phantom{15)999}0\\\end{array}
Find closest multiple of 15 to 90. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 90 to get reminder 0. Add 6 to quotient.
\text{Quotient: }56 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 056 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}