Solve for t
t=12
t=14
Share
Copied to clipboard
130t-5t^{2}=840
Swap sides so that all variable terms are on the left hand side.
130t-5t^{2}-840=0
Subtract 840 from both sides.
-5t^{2}+130t-840=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-130±\sqrt{130^{2}-4\left(-5\right)\left(-840\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 130 for b, and -840 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-130±\sqrt{16900-4\left(-5\right)\left(-840\right)}}{2\left(-5\right)}
Square 130.
t=\frac{-130±\sqrt{16900+20\left(-840\right)}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-130±\sqrt{16900-16800}}{2\left(-5\right)}
Multiply 20 times -840.
t=\frac{-130±\sqrt{100}}{2\left(-5\right)}
Add 16900 to -16800.
t=\frac{-130±10}{2\left(-5\right)}
Take the square root of 100.
t=\frac{-130±10}{-10}
Multiply 2 times -5.
t=-\frac{120}{-10}
Now solve the equation t=\frac{-130±10}{-10} when ± is plus. Add -130 to 10.
t=12
Divide -120 by -10.
t=-\frac{140}{-10}
Now solve the equation t=\frac{-130±10}{-10} when ± is minus. Subtract 10 from -130.
t=14
Divide -140 by -10.
t=12 t=14
The equation is now solved.
130t-5t^{2}=840
Swap sides so that all variable terms are on the left hand side.
-5t^{2}+130t=840
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5t^{2}+130t}{-5}=\frac{840}{-5}
Divide both sides by -5.
t^{2}+\frac{130}{-5}t=\frac{840}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}-26t=\frac{840}{-5}
Divide 130 by -5.
t^{2}-26t=-168
Divide 840 by -5.
t^{2}-26t+\left(-13\right)^{2}=-168+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-26t+169=-168+169
Square -13.
t^{2}-26t+169=1
Add -168 to 169.
\left(t-13\right)^{2}=1
Factor t^{2}-26t+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-13\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
t-13=1 t-13=-1
Simplify.
t=14 t=12
Add 13 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}