Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

84x^{2}+4\sqrt{3}x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4\sqrt{3}±\sqrt{\left(4\sqrt{3}\right)^{2}-4\times 84\times 3}}{2\times 84}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 84 for a, 4\sqrt{3} for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4\sqrt{3}±\sqrt{48-4\times 84\times 3}}{2\times 84}
Square 4\sqrt{3}.
x=\frac{-4\sqrt{3}±\sqrt{48-336\times 3}}{2\times 84}
Multiply -4 times 84.
x=\frac{-4\sqrt{3}±\sqrt{48-1008}}{2\times 84}
Multiply -336 times 3.
x=\frac{-4\sqrt{3}±\sqrt{-960}}{2\times 84}
Add 48 to -1008.
x=\frac{-4\sqrt{3}±8\sqrt{15}i}{2\times 84}
Take the square root of -960.
x=\frac{-4\sqrt{3}±8\sqrt{15}i}{168}
Multiply 2 times 84.
x=\frac{-4\sqrt{3}+8\sqrt{15}i}{168}
Now solve the equation x=\frac{-4\sqrt{3}±8\sqrt{15}i}{168} when ± is plus. Add -4\sqrt{3} to 8i\sqrt{15}.
x=\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
Divide -4\sqrt{3}+8i\sqrt{15} by 168.
x=\frac{-8\sqrt{15}i-4\sqrt{3}}{168}
Now solve the equation x=\frac{-4\sqrt{3}±8\sqrt{15}i}{168} when ± is minus. Subtract 8i\sqrt{15} from -4\sqrt{3}.
x=-\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
Divide -4\sqrt{3}-8i\sqrt{15} by 168.
x=\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42} x=-\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
The equation is now solved.
84x^{2}+4\sqrt{3}x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
84x^{2}+4\sqrt{3}x+3-3=-3
Subtract 3 from both sides of the equation.
84x^{2}+4\sqrt{3}x=-3
Subtracting 3 from itself leaves 0.
\frac{84x^{2}+4\sqrt{3}x}{84}=-\frac{3}{84}
Divide both sides by 84.
x^{2}+\frac{4\sqrt{3}}{84}x=-\frac{3}{84}
Dividing by 84 undoes the multiplication by 84.
x^{2}+\frac{\sqrt{3}}{21}x=-\frac{3}{84}
Divide 4\sqrt{3} by 84.
x^{2}+\frac{\sqrt{3}}{21}x=-\frac{1}{28}
Reduce the fraction \frac{-3}{84} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{\sqrt{3}}{21}x+\left(\frac{\sqrt{3}}{42}\right)^{2}=-\frac{1}{28}+\left(\frac{\sqrt{3}}{42}\right)^{2}
Divide \frac{\sqrt{3}}{21}, the coefficient of the x term, by 2 to get \frac{\sqrt{3}}{42}. Then add the square of \frac{\sqrt{3}}{42} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{\sqrt{3}}{21}x+\frac{1}{588}=-\frac{1}{28}+\frac{1}{588}
Square \frac{\sqrt{3}}{42}.
x^{2}+\frac{\sqrt{3}}{21}x+\frac{1}{588}=-\frac{5}{147}
Add -\frac{1}{28} to \frac{1}{588} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{\sqrt{3}}{42}\right)^{2}=-\frac{5}{147}
Factor x^{2}+\frac{\sqrt{3}}{21}x+\frac{1}{588}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{\sqrt{3}}{42}\right)^{2}}=\sqrt{-\frac{5}{147}}
Take the square root of both sides of the equation.
x+\frac{\sqrt{3}}{42}=\frac{\sqrt{15}i}{21} x+\frac{\sqrt{3}}{42}=-\frac{\sqrt{15}i}{21}
Simplify.
x=\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42} x=-\frac{\sqrt{15}i}{21}-\frac{\sqrt{3}}{42}
Subtract \frac{\sqrt{3}}{42} from both sides of the equation.