Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

12\left(7t-t^{2}\right)
Factor out 12.
t\left(7-t\right)
Consider 7t-t^{2}. Factor out t.
12t\left(-t+7\right)
Rewrite the complete factored expression.
-12t^{2}+84t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-84±\sqrt{84^{2}}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-84±84}{2\left(-12\right)}
Take the square root of 84^{2}.
t=\frac{-84±84}{-24}
Multiply 2 times -12.
t=\frac{0}{-24}
Now solve the equation t=\frac{-84±84}{-24} when ± is plus. Add -84 to 84.
t=0
Divide 0 by -24.
t=-\frac{168}{-24}
Now solve the equation t=\frac{-84±84}{-24} when ± is minus. Subtract 84 from -84.
t=7
Divide -168 by -24.
-12t^{2}+84t=-12t\left(t-7\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 7 for x_{2}.