Skip to main content
Solve for j
Tick mark Image

Similar Problems from Web Search

Share

84j+7j^{2}=0
Add 7j^{2} to both sides.
j\left(84+7j\right)=0
Factor out j.
j=0 j=-12
To find equation solutions, solve j=0 and 84+7j=0.
84j+7j^{2}=0
Add 7j^{2} to both sides.
7j^{2}+84j=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
j=\frac{-84±\sqrt{84^{2}}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 84 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
j=\frac{-84±84}{2\times 7}
Take the square root of 84^{2}.
j=\frac{-84±84}{14}
Multiply 2 times 7.
j=\frac{0}{14}
Now solve the equation j=\frac{-84±84}{14} when ± is plus. Add -84 to 84.
j=0
Divide 0 by 14.
j=-\frac{168}{14}
Now solve the equation j=\frac{-84±84}{14} when ± is minus. Subtract 84 from -84.
j=-12
Divide -168 by 14.
j=0 j=-12
The equation is now solved.
84j+7j^{2}=0
Add 7j^{2} to both sides.
7j^{2}+84j=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7j^{2}+84j}{7}=\frac{0}{7}
Divide both sides by 7.
j^{2}+\frac{84}{7}j=\frac{0}{7}
Dividing by 7 undoes the multiplication by 7.
j^{2}+12j=\frac{0}{7}
Divide 84 by 7.
j^{2}+12j=0
Divide 0 by 7.
j^{2}+12j+6^{2}=6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
j^{2}+12j+36=36
Square 6.
\left(j+6\right)^{2}=36
Factor j^{2}+12j+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(j+6\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
j+6=6 j+6=-6
Simplify.
j=0 j=-12
Subtract 6 from both sides of the equation.