Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

14\left(6x^{2}+5x-21\right)
Factor out 14.
a+b=5 ab=6\left(-21\right)=-126
Consider 6x^{2}+5x-21. Factor the expression by grouping. First, the expression needs to be rewritten as 6x^{2}+ax+bx-21. To find a and b, set up a system to be solved.
-1,126 -2,63 -3,42 -6,21 -7,18 -9,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -126.
-1+126=125 -2+63=61 -3+42=39 -6+21=15 -7+18=11 -9+14=5
Calculate the sum for each pair.
a=-9 b=14
The solution is the pair that gives sum 5.
\left(6x^{2}-9x\right)+\left(14x-21\right)
Rewrite 6x^{2}+5x-21 as \left(6x^{2}-9x\right)+\left(14x-21\right).
3x\left(2x-3\right)+7\left(2x-3\right)
Factor out 3x in the first and 7 in the second group.
\left(2x-3\right)\left(3x+7\right)
Factor out common term 2x-3 by using distributive property.
14\left(2x-3\right)\left(3x+7\right)
Rewrite the complete factored expression.
84x^{2}+70x-294=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-70±\sqrt{70^{2}-4\times 84\left(-294\right)}}{2\times 84}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{4900-4\times 84\left(-294\right)}}{2\times 84}
Square 70.
x=\frac{-70±\sqrt{4900-336\left(-294\right)}}{2\times 84}
Multiply -4 times 84.
x=\frac{-70±\sqrt{4900+98784}}{2\times 84}
Multiply -336 times -294.
x=\frac{-70±\sqrt{103684}}{2\times 84}
Add 4900 to 98784.
x=\frac{-70±322}{2\times 84}
Take the square root of 103684.
x=\frac{-70±322}{168}
Multiply 2 times 84.
x=\frac{252}{168}
Now solve the equation x=\frac{-70±322}{168} when ± is plus. Add -70 to 322.
x=\frac{3}{2}
Reduce the fraction \frac{252}{168} to lowest terms by extracting and canceling out 84.
x=-\frac{392}{168}
Now solve the equation x=\frac{-70±322}{168} when ± is minus. Subtract 322 from -70.
x=-\frac{7}{3}
Reduce the fraction \frac{-392}{168} to lowest terms by extracting and canceling out 56.
84x^{2}+70x-294=84\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{7}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -\frac{7}{3} for x_{2}.
84x^{2}+70x-294=84\left(x-\frac{3}{2}\right)\left(x+\frac{7}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
84x^{2}+70x-294=84\times \frac{2x-3}{2}\left(x+\frac{7}{3}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
84x^{2}+70x-294=84\times \frac{2x-3}{2}\times \frac{3x+7}{3}
Add \frac{7}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
84x^{2}+70x-294=84\times \frac{\left(2x-3\right)\left(3x+7\right)}{2\times 3}
Multiply \frac{2x-3}{2} times \frac{3x+7}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
84x^{2}+70x-294=84\times \frac{\left(2x-3\right)\left(3x+7\right)}{6}
Multiply 2 times 3.
84x^{2}+70x-294=14\left(2x-3\right)\left(3x+7\right)
Cancel out 6, the greatest common factor in 84 and 6.