Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

5t+\frac{3}{2}t^{2}=84
Swap sides so that all variable terms are on the left hand side.
5t+\frac{3}{2}t^{2}-84=0
Subtract 84 from both sides.
\frac{3}{2}t^{2}+5t-84=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-5±\sqrt{5^{2}-4\times \frac{3}{2}\left(-84\right)}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, 5 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\times \frac{3}{2}\left(-84\right)}}{2\times \frac{3}{2}}
Square 5.
t=\frac{-5±\sqrt{25-6\left(-84\right)}}{2\times \frac{3}{2}}
Multiply -4 times \frac{3}{2}.
t=\frac{-5±\sqrt{25+504}}{2\times \frac{3}{2}}
Multiply -6 times -84.
t=\frac{-5±\sqrt{529}}{2\times \frac{3}{2}}
Add 25 to 504.
t=\frac{-5±23}{2\times \frac{3}{2}}
Take the square root of 529.
t=\frac{-5±23}{3}
Multiply 2 times \frac{3}{2}.
t=\frac{18}{3}
Now solve the equation t=\frac{-5±23}{3} when ± is plus. Add -5 to 23.
t=6
Divide 18 by 3.
t=-\frac{28}{3}
Now solve the equation t=\frac{-5±23}{3} when ± is minus. Subtract 23 from -5.
t=6 t=-\frac{28}{3}
The equation is now solved.
5t+\frac{3}{2}t^{2}=84
Swap sides so that all variable terms are on the left hand side.
\frac{3}{2}t^{2}+5t=84
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{2}t^{2}+5t}{\frac{3}{2}}=\frac{84}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{5}{\frac{3}{2}}t=\frac{84}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
t^{2}+\frac{10}{3}t=\frac{84}{\frac{3}{2}}
Divide 5 by \frac{3}{2} by multiplying 5 by the reciprocal of \frac{3}{2}.
t^{2}+\frac{10}{3}t=56
Divide 84 by \frac{3}{2} by multiplying 84 by the reciprocal of \frac{3}{2}.
t^{2}+\frac{10}{3}t+\left(\frac{5}{3}\right)^{2}=56+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{10}{3}t+\frac{25}{9}=56+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{10}{3}t+\frac{25}{9}=\frac{529}{9}
Add 56 to \frac{25}{9}.
\left(t+\frac{5}{3}\right)^{2}=\frac{529}{9}
Factor t^{2}+\frac{10}{3}t+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{5}{3}\right)^{2}}=\sqrt{\frac{529}{9}}
Take the square root of both sides of the equation.
t+\frac{5}{3}=\frac{23}{3} t+\frac{5}{3}=-\frac{23}{3}
Simplify.
t=6 t=-\frac{28}{3}
Subtract \frac{5}{3} from both sides of the equation.