Evaluate
19
Factor
19
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)836}\\\end{array}
Use the 1^{st} digit 8 from dividend 836
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)836}\\\end{array}
Since 8 is less than 44, use the next digit 3 from dividend 836 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)836}\\\end{array}
Use the 2^{nd} digit 3 from dividend 836
\begin{array}{l}\phantom{44)}01\phantom{4}\\44\overline{)836}\\\phantom{44)}\underline{\phantom{}44\phantom{9}}\\\phantom{44)}39\\\end{array}
Find closest multiple of 44 to 83. We see that 1 \times 44 = 44 is the nearest. Now subtract 44 from 83 to get reminder 39. Add 1 to quotient.
\begin{array}{l}\phantom{44)}01\phantom{5}\\44\overline{)836}\\\phantom{44)}\underline{\phantom{}44\phantom{9}}\\\phantom{44)}396\\\end{array}
Use the 3^{rd} digit 6 from dividend 836
\begin{array}{l}\phantom{44)}019\phantom{6}\\44\overline{)836}\\\phantom{44)}\underline{\phantom{}44\phantom{9}}\\\phantom{44)}396\\\phantom{44)}\underline{\phantom{}396\phantom{}}\\\phantom{44)999}0\\\end{array}
Find closest multiple of 44 to 396. We see that 9 \times 44 = 396 is the nearest. Now subtract 396 from 396 to get reminder 0. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }0
Since 0 is less than 44, stop the division. The reminder is 0. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}