Evaluate
\frac{9715}{8}=1214.375
Factor
\frac{5 \cdot 29 \cdot 67}{2 ^ {3}} = 1214\frac{3}{8} = 1214.375
Share
Copied to clipboard
\begin{array}{l}\phantom{688)}\phantom{1}\\688\overline{)835490}\\\end{array}
Use the 1^{st} digit 8 from dividend 835490
\begin{array}{l}\phantom{688)}0\phantom{2}\\688\overline{)835490}\\\end{array}
Since 8 is less than 688, use the next digit 3 from dividend 835490 and add 0 to the quotient
\begin{array}{l}\phantom{688)}0\phantom{3}\\688\overline{)835490}\\\end{array}
Use the 2^{nd} digit 3 from dividend 835490
\begin{array}{l}\phantom{688)}00\phantom{4}\\688\overline{)835490}\\\end{array}
Since 83 is less than 688, use the next digit 5 from dividend 835490 and add 0 to the quotient
\begin{array}{l}\phantom{688)}00\phantom{5}\\688\overline{)835490}\\\end{array}
Use the 3^{rd} digit 5 from dividend 835490
\begin{array}{l}\phantom{688)}001\phantom{6}\\688\overline{)835490}\\\phantom{688)}\underline{\phantom{}688\phantom{999}}\\\phantom{688)}147\\\end{array}
Find closest multiple of 688 to 835. We see that 1 \times 688 = 688 is the nearest. Now subtract 688 from 835 to get reminder 147. Add 1 to quotient.
\begin{array}{l}\phantom{688)}001\phantom{7}\\688\overline{)835490}\\\phantom{688)}\underline{\phantom{}688\phantom{999}}\\\phantom{688)}1474\\\end{array}
Use the 4^{th} digit 4 from dividend 835490
\begin{array}{l}\phantom{688)}0012\phantom{8}\\688\overline{)835490}\\\phantom{688)}\underline{\phantom{}688\phantom{999}}\\\phantom{688)}1474\\\phantom{688)}\underline{\phantom{}1376\phantom{99}}\\\phantom{688)99}98\\\end{array}
Find closest multiple of 688 to 1474. We see that 2 \times 688 = 1376 is the nearest. Now subtract 1376 from 1474 to get reminder 98. Add 2 to quotient.
\begin{array}{l}\phantom{688)}0012\phantom{9}\\688\overline{)835490}\\\phantom{688)}\underline{\phantom{}688\phantom{999}}\\\phantom{688)}1474\\\phantom{688)}\underline{\phantom{}1376\phantom{99}}\\\phantom{688)99}989\\\end{array}
Use the 5^{th} digit 9 from dividend 835490
\begin{array}{l}\phantom{688)}00121\phantom{10}\\688\overline{)835490}\\\phantom{688)}\underline{\phantom{}688\phantom{999}}\\\phantom{688)}1474\\\phantom{688)}\underline{\phantom{}1376\phantom{99}}\\\phantom{688)99}989\\\phantom{688)}\underline{\phantom{99}688\phantom{9}}\\\phantom{688)99}301\\\end{array}
Find closest multiple of 688 to 989. We see that 1 \times 688 = 688 is the nearest. Now subtract 688 from 989 to get reminder 301. Add 1 to quotient.
\begin{array}{l}\phantom{688)}00121\phantom{11}\\688\overline{)835490}\\\phantom{688)}\underline{\phantom{}688\phantom{999}}\\\phantom{688)}1474\\\phantom{688)}\underline{\phantom{}1376\phantom{99}}\\\phantom{688)99}989\\\phantom{688)}\underline{\phantom{99}688\phantom{9}}\\\phantom{688)99}3010\\\end{array}
Use the 6^{th} digit 0 from dividend 835490
\begin{array}{l}\phantom{688)}001214\phantom{12}\\688\overline{)835490}\\\phantom{688)}\underline{\phantom{}688\phantom{999}}\\\phantom{688)}1474\\\phantom{688)}\underline{\phantom{}1376\phantom{99}}\\\phantom{688)99}989\\\phantom{688)}\underline{\phantom{99}688\phantom{9}}\\\phantom{688)99}3010\\\phantom{688)}\underline{\phantom{99}2752\phantom{}}\\\phantom{688)999}258\\\end{array}
Find closest multiple of 688 to 3010. We see that 4 \times 688 = 2752 is the nearest. Now subtract 2752 from 3010 to get reminder 258. Add 4 to quotient.
\text{Quotient: }1214 \text{Reminder: }258
Since 258 is less than 688, stop the division. The reminder is 258. The topmost line 001214 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1214.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}