Evaluate
\frac{167}{6}\approx 27.833333333
Factor
\frac{167}{2 \cdot 3} = 27\frac{5}{6} = 27.833333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)835}\\\end{array}
Use the 1^{st} digit 8 from dividend 835
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)835}\\\end{array}
Since 8 is less than 30, use the next digit 3 from dividend 835 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)835}\\\end{array}
Use the 2^{nd} digit 3 from dividend 835
\begin{array}{l}\phantom{30)}02\phantom{4}\\30\overline{)835}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}23\\\end{array}
Find closest multiple of 30 to 83. We see that 2 \times 30 = 60 is the nearest. Now subtract 60 from 83 to get reminder 23. Add 2 to quotient.
\begin{array}{l}\phantom{30)}02\phantom{5}\\30\overline{)835}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}235\\\end{array}
Use the 3^{rd} digit 5 from dividend 835
\begin{array}{l}\phantom{30)}027\phantom{6}\\30\overline{)835}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}235\\\phantom{30)}\underline{\phantom{}210\phantom{}}\\\phantom{30)9}25\\\end{array}
Find closest multiple of 30 to 235. We see that 7 \times 30 = 210 is the nearest. Now subtract 210 from 235 to get reminder 25. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }25
Since 25 is less than 30, stop the division. The reminder is 25. The topmost line 027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}